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Abstract de present a solution to the Einstein equations for gravi-
tational waves which exhibits soliton characteristics.

The soliton concept plays an important rolein several branches
of physics. In particular, in relativistic field theory these non-triy-
ial classical solutions are important for calculating the functional
path integral through the semiclassical method. Thus we can calculate
quantum fluctuations about these solutions and generate a well definite
approximation technique for computing the Green's functions. Soliton
solutions are relevant because they can not be reached by standard per-
turbation theory and therefore can provide information about the theory
outside the perturbative context. Non-perturbative properties, like a
mechanism for quark confinement in QCD, are hoped to be found in this
way".

Gravitational solitons may also be very useful. Classically,
they may be associated to galaxies in cosmological models® or may trig-
ger gravitational wave detectors. At the big bang soliton configurations
might have a fundamental role in determining the evolution of the Uni-
verse. And, at the quantum level, once a consistent quantum gravity
theory is Formulated (the only surviving candidates at present being the
supergrédvity theories®), the solutions will hopefully help in the under-
standing of the non-perturbative aspects of the theory.

In order to generate soliton solutions from Einsteinequations
the inverse scattering“’® and Backlund transformation® methods have been
adapted to general relativity. Vacuum axially symmetric waves and station-
ary axially symmetric space-times have been studied under these
methods and shown to possess solitons. These techniques have also been
extended to the case when matter is present behaving as solitons® or

not®. However, the new solutions so obtained are in general complicated
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Because we are dealing with plane waves we can only require a finite
energy (density) flux and not finite energy. Also, the solutions will be
required to be localized in the u-direction only.

We now return to Eqg. (2) to find out an exact solution. Since

B is an arbitrary function we choose it as
(g2 =1 - 1% (5)

so that (2) becomes
L"+z(1 -z% =0 (6)

This is the well-known equation for the kink in the Ap* theory in two
dimensions'®. Its non-trivial solutions are called topological solitons,
and are localized solutions carrying finite energy anda conserved topo-

logical charge. The solutions of Eq.(6) are

L= %1 (7a)

L

ftanh g, [ = L (u-uy) (7b)
2

where u; is a constant. Since L enters in (1) and (5) only as L? the
signs are not important. (7a) is the trivial solution since B=constant
and the space-time is flat. For the solution (7b) we can integrate (5)
to find

B = /2 arc tan (sinh g) + 8, (8)

where B, is a constant. Since B, appears always as a multiplicative
constant in (1) it can be set to zero. The signs in (8) are also irrel-
evant since the solution with a given sign can be obtained from the
other by the exchange of X and Y. Then,the element of line (1) can be

put in the form

ds® = dudv + tanh®r {exp[(V2arctan(sinhz)]dz? +

+ exp[~v2 arctan(sinh zJdy?} (9)

This metric is also asymptotically flat since for u > %o, L* > 1 and
B = constant. There is no physical singularity as is well knownlo, the
singularity appearing at u = %, can be removed by a suitable coordinate

transformation!®.
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and not easy to handle.

In this paper we present a simple soliton solutionfora plane
gravitational wave. Although suggested in ref. (7) that there are
solitons among the solutions of plane gravitational waves none was pre-
sented thei-e. Also, in ref. (7), the number of arbitrary functions as-
sociated to the model is incorrectly given as two. Once a transform-
ation of coordinates is performed to eliminate g,, the number of arbi-
trary functions reduces to one® as is well known®*19211,

We start with the metric!®

ds? = dudv + 12 (c*Pan® + e-zedyz) m
with L = L(x) and B = B(u), and the field equations are given by

"+ L)% =0. (2)

where the prime denotes differentiation with respect to ». Eq. (1) rep-
resents a plane wave propagating along the u-axis, with amplitude L and
wave factor B. The properties of such waves have been extensively studied
for the case of a ''sandwich" waveg, that is, a wave for which the am-
plitude is non-zero only for a finite range of u, elsewhere the space-
time being flat. In that caseBis a pulse of duration 2T satisfying
|B' |<<1/T tnroughout the pulse. To study solitons, however, a sol-
ution without any approximation is desirable and we will later on pre-
sent an exact solution to Eq. (2).

Since we are not going to apply the soliton generating tech-
niques mentioned earlier we have to define solitons in thegravitational
context. In the inverse scattering method**®, for example, a solution
is called solitonic if the associated scattering rnatrix has poles, the
number of poles being the number of solitons. Here, we will adopt a

broader definition!?: any non-trivial solution which is confined to a

finite region of space-time and which carries a finite energy will be
considered a soliton. In order to apply the last criterium we use tr}e
definition of the conserved energy-momentum pseudo-tensor given by!! 3
132 v Ak uX
oM e —— S [/-_g g™y - g" gvﬁl (3)
16m 3x" dx

Since the gane waves move only in one direction, gravitational energy

can be localized'® and we can define an energy flux as
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The only non-vanishing component of the energy-momentum pseudo
-tensor (3) is

v

9 =EI? sech?r (3 tanh?z - 1) (10)

and the energy flux (4) is finite and equal to 2v2/(15T. W can also
show, from {10), that the linear momentum in the z-direction is also
finite as we would expect.

W thus have a soliton, a solution located around gy, whichis
asymptotically flat and with a finite energy flux. It would be interesting
to generalize this solution to a multi-soliton solution. To this end we
could apply the inverse scattering method®?%, first finding out the seed
solution for the soliton presented here and them applying the machinery
to generate the multi-soliton solution. It would also be possible to
find out classes of solitons by stablishing the conditionsZ and Bwould
satisfy in order that the integral (4) would be finite and the solutions

asymptotically flat. W hope to report on this elsewhere.

W thank M.Assad and !.Waga for conversations and a reading

of the manuscript.
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Resumo

Apresentamos uma solucdo das equacgdes de Einstein para ondas
gravitacionais que exibe caracteristicas de soliton.
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