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Abstract Theworkof Montroll inderiving the propagatorof time-depen-
dent harmonic oscillator is generalized to obtain the propagatoroftime
~-dependent harmonic oscillator with constant damping term.

1. INTRODUCTION

From Feynman's formulation of nonrelativistic quantummechanics

the prcpagator, probability amplitude for a particle togofromthepoint
{z',£') to the point {x",t"), can be expressed as'’?’?
o) tll
. J exp{(i/h)j , Lix,x,t)dt} Dx(t) (1.1)
-oc t

K{x'", e x',t') = [
—
where L{x,%,t) is the Lagrangian of the dynamical system considered and
Dz(t) indicates that the integral is over all paths with fixed end points
(x',z') and (x",t").
For time-dependent harmonic oscilltator, Montroll®* first trans-
forms the path integral (1.1) into the Gaussian integral

{oe] o0 n
j j exp{i(yTAy + ZbTy)} il dyj = (ivr)n/2

-0 - j=l
(1.2)

(det 4) " ?exp(-ibTa™ D)

multiplied bya functionof x’, x" and T. Here we have defined T=(t"-¢")/n
for later convenience. He then carriers out calculations as T > 0 (or
n - «). His method has recently been applied for evaluating the propa-
gator of time-dependent forced harmonic oscillator®. |n the present work
the same method has been generalized further to calculate the propa-
gator of time-dependent harmonic oscillator with constant damping.

In Section 2, we are able to transform our path integral into

the Gaussian integral (1.2) multiplied by a function of ', x" and T.
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In Section 3, we show the details of calculation (and also in the Ap-
pendix) as T ~ 0 and we write down the propagator in terms of f(¢) and
g(t), which are respectively the solutions of time-dependent harmonic
oscillator with damping and with antidamping. Finally, we discuss the

result in Section 4.

2. FORMULATION

For time-dependent harmonic oscillator with constant damping

term, the equation of motion is
P+ye+w(t)e =0 (2.1)

where w(t)isa time-dependent frequency and yisaconstant damping coef -

ficient. Eq. (2.1) can be obtained from the Lagrangian®

Lz, t) = ef® mE? - o? (£)x7] /2 (2.2)

In spite of its interpretation difficulties in quantum mechanics’’%, we

are going to use (2.2) as our Lagrangian. Now the propagator defined by

(1.1) can be written as

nroo J=1

_ Yt n-l vyt n=l
x Eﬂ’l.' 2 e Yz, - .7(:._,)2 -m ) e Y ; ;—[} o dxj . (2.3)
J=1 g7 =0 - L) g=1

n Yt, © ° '
K(x“,t“;x',x’) = Lim I_ I (me J/ZTT'I:h'T)l/Z]J J: exp {(7:1'/272')

1t~

by Feynman's definition. The extra factor exp(Ytj) is necessary for in-
cluding dissipative effect. For later convenience we have set T =
= (t"-t')/n and rj = p(t'+jt), r' =r(t') and ' = r(t") for any func-
tion T(t). Now we let Y= exp(YtS./Z)(m/ZET)l/zxj, then (2.3) can be

rewritten as

' 2 _ ’
Kz, t" 2! ,t') = Lim (iﬂ)-n/z(meYt' /ZFZT)I/ exp{(iT/ZE) En'r Z(eYt x'?

n>o

Y o2 YE' 2,2 “ ® ‘i—n‘] YT 2 _2y,.2
+e' %) - me'” wx exp 7,L Z (1+e Wt )yj
A -0 J=1

n=1 n-1
YT/2
-2 720 e nyJH:{} JZ] dyj (2.4)

i = expl-yt./2) 2Bt/m) Y %dy ..
since dmg exp ( YtJ/ ) (2x1/m) dyJ
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By comparing (1.2) and (2.4) we find that the matrix A is of

the form
a, -d 0 0. 0 0 0 0
4 a -d 0 0 0 0 0
0 -d a =d.. 0 0 0 0
A= | rrrre (2.5)
0 0 0 0 -d an_3 ~d 0
0 0 0 0 0 -d a, o -d
0 0 0 0 0 0 ~d a4

with a; = 1 + exp(yt) - m,;.'rz and d = exp(yt/2). The column matrix b has

the following elements;

b, =-y' explyt/2) = - ot M2 exp(yt, /2) x!
(2.6)
b.=0 (j=2,3, ..., n-2
g (4 3 n-2)
and
by =~ y" exp(yt/2) = - ot t/? exp [y (£"+1) /2] 2"
Here we have set ¢ = (m/ZE)l/Z. Bysubstituting (1.2) into (2.4) we
obtain
il W, 1 I -— H Ytll g 1/2 h it ]
K{x", 52" ,¢") = Lim (me'” /2nifit det 4) exp{zB(z',z',T)} (2.7)
™0
and

Blz',x',t) = (m/2hT) (exp(yt,) ='? + exp(yt") =''?) - »Ta'p
(2.8)
W have assumed that the factor exp(-im exp(yt') w'2x'?t/2%) in (2.4)
to be one as T =+ 0. Now we are only left to calculate the limit values
of T det4and B(x",x',t) as t > 0. With the help of (2.5) - (2.8), the
calculations will be carried out in the next section and in the Appen-
dix.
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3. CALCULATION

Fomthe matrix A we define A3. and D3. as the followng deter-

m nant s
a, -d a, =d 0
A1=a1, A2= da s Ay = -d a, -d seees An_] = det 4
2 0 —d as
a -d
_ _ n-2
Dy Ay 0 Dn—Z L J
-1
an_3 -d 0
D,3=1|-d a, _, -d seve, Dy = det A
0 -d R

It is easily to show that Ag and DJ. satisfy the recurrence rel ations

_ - A2 — 1 -
A =N TP, A= 0] <N (3.1
and
qj_] = “j-le - d20j+] yn=1 (25 €n-1) (3.2)

Furthernore, egs (3.1) and (3.2) can be transforned into the finite-
-difference equations

. - 2 = - 2 - -
(‘Dj+] ZDJ. + DJ._])/T wj—le Y(Dj+l Dj)/’l' (3.3)
and
- 2 _ 2 -
(.AJ.” 2A3. + AJ._I)/T = mj+1A3' + Y(AJ- AJ._I)/T (3.4)

)
respectively. Fomegs (3.1) and (3.2) we see that the end conditions
of A3. and D3 are

D =% 10 =a =A (3.5)

(Dn-l - Dn_z)/T = {an_] (l-an_z) +d%}/1 = -(1/1) (3.6)
and

(4, - ap/t =Hayla, - 1) - at/t} = 1/t (3.7)
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for small 1. in order to overcome the difficultie¢ of divergence in
eqs {3.6) and (3.7), we now introduce fj and gj by
f. =10, and . =TA, .8
37 95 =% (3.8)
With the help of egs (3.5) - (3.7), egs (3.3) and (3.4) can berewritten

as the differential equations

FHyf O E)f =0, =0, fr=-1 (3.9)

and
0,g' =0, g''= {(3.10)

g - vg +w(t)g
in the limit as T > O Therefore, we obtain

Lim (T det A) = Lim (t0;) = Lim £, = f(¢') = ' =¢" (3.11)
>0 ™0 ™0

From egs (3.1), (3.2) and (3.8) we discover that the f3 and gJ
are related through the formula

2 - d%f,

- . = fo. = T?detd = =T
Tin95 ~ $F5a0950 = 73950 J+1 Tdetd = Ty = 19,

gj_z

(3.12)

Hence
-1 2
95 = TJL‘lfj+2 (fj+lfj+2) +d fj+29j-1/fj+‘

-1 2 -1 u
=\ i {(fj+]f-+2) + d(Ff ) Y+ d Tin932/;

J J°d
= ... = Tflfj+2 2: (fkfk“)'1 420 -k+1) (3.13)
In particular, we have
v? ;;z: Pl @209 < a2g rg, (3.14)
for § = n-2. Using egqs (2.5) and (3.13) we can show that
b4 - :E: (Ff 1y @7 :;2; by d ) (3.15)

The above relation is proved in the Appendix.
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Now substituting eq (2.6) into eq (3.15), we get

b4t = (r f,d) 7 {-01'1/2[%Yt1/2 pydat + STEN/2p o1 T
. nil (fjfjﬂdzj)—l {_eT-l/z ey(t“+1')/2fn 'dn'] x"}2
i=2
= (i) P 02 s (ZGZ/fl)eYt“ ©'gh
+ et ZE: Gl dz(n-k{] e (3.16)

after lengthy but straightforward calculations. Substituting eq (3.16)
into eqs {(2.7) and (2.8), the propagator takes the following form

1 172 .
Kz, 2", t") = Lim (meYt /21LHT det A) / exp{i[aTx'z+bTx'ac“+ch”ﬂ]

0
(3.17)
where
a; = (meYtl/th)(l-fz/fl)
14
b= - me'" ngp,
and
= me" j2mt) 1 - 12 ni] ( )-1d2(n—kf1
Cp = \m T %=1 fkf7<+l |
As T > 0, we finally obtain
Lima_ - Lin meYEr/2m8 ) (£, - £,/ = = meYY prr2mp) (3.18)
T*0 ™0
Lim b = Lim (me"® /7)) = = (me¥® /") (3.19)
T->0 >0
and
Lim ¢ = Lim e 7250 (i - €¥79,,-2/9,,-)
>0 ™0
= Yt 128) (= + §"/g") (3.20)

Here we have used eq (3.14) to derive eq (3.20).
Substituting eq (3.11) and (3.18) - (3.20) into eq (3.17), we

obtain our main result



Kz, t"sx',¢') = (rne\{t”/Zﬂi?if‘)1/2 exp{(m/271/‘if')l:f'eYt'ac'2

1] . o
+ 2270 prant 4 (yr' - g”)eyt z'" ]} (3.21)
Here we assume that f' = g"' # 0 for excluding catastrophic phenomenon. The
propagator has been written in terms of £(z) and g(¢£) which are the

solutions of the equation of motion of time-dependent harmonic oscil-
lator with damping term and with antidamping term, respectively. For
¥=0, the above equation is equivalent to eq (3.13) with g{(t) = 0 inRef.

5 as we expect.

4. RESULT
It can easily be shown that the solutions of egs (3.9).and(3.10
are
£e) = s(w)e” YEEV2 Giev (2] (4.1)
and
g(£) = s(t)e Y (E'-t)/2 e - v] (4.2)

respectively, where s(¢) and v(t) are the amplitude and the phase of
time-dependent harmonic oscitlator with constant damping (or antidamp-

ing). In order to satisfy their boundary conditions, we let

5(¢) - 8'257°(¢) + Q2(8)s(t) = 0, Q%(£) = W (¢) ~y¥4  (a.3)
and

s?(£)v(t) = s (h.4)

We algo have s' = s, v' = V" and s'V' = 8" = 1 since f' = g".  With
the help of eqs (4.1) - (4.4), eq (3.21) can be rewritten as

1 1l 172
Kz, t'52',2") = @eY(t +t")/2 vY/2mil sin @(t“,t'ﬂ I x
exp{ (mv' 74i%) BZé' - Ys')eYtlx'z - (28" - Ys“)eYt“x”z:’l} x
exp {(Zmv'/2h) BeYt z'? 4 eYtHx”z)cot (e, ")

- ZeY(tl+tl')/2 x'x' csc <I>(t",t'):[} (4.5)
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with &(a,B) = v(a) - v(B) for any two arbitrary time a and g, When
w(t) is a constant frequency w,, €q (4.5) reduces to the propagator
evaluated by Papadopoulos® and is equivalent to (80)  without pertur-
tive force of Khandekar and Lawande!®. However, we need both f{t) and
g(t) to evaluate the propagator. It seems to agree with the idea of
Feshbach and Tikochinsky!'?!,

APPENDIX

-1 - .
The elements of A , represented by ajii’ are determined by

finding the cofactor of A Therefore, we have from eq (2.5) that

- - X .
aj;{ =& k A, J” dJ g5 ]/Tf1 , Ji>k (A.1)
and 1 k-4 k- ;
- -g -
ag =d 4 D /0y = d Y51k /1 i<k (A.2)

With the help of egs (3.13) - (3.14) and (A.1) - (A.2), we obtain

T -1, _ n;] -1
b A -b— A b.a .kb
gok=1 9 IKK
{ n=-2 n-1 . n-l . n-1
‘ * K &
=Q/tf) ¢ L by, d L b, &+ ] bg. d? b
1 ﬁ.L oy R L BT ® L Pt L AP
k
n-2 n-1 .
-k 3 -1 2(k-m)
= ) bufrd (f Y ob.f. &
ke kY k+1 =} nrfm+l Jekae1 ¥ J+l
T s {1 ! 29 m>} T
+ f R f
F=1 J-H =1 k=i kY k+1
nil . n-2 n-l ( dk)
= (f f ) b f
J=1 'H m—J k=m+| "’f’"“ Cifinn
n=1 . n-1 n-l
) 23y "
. .d- b d
* ji] (fJf,;rH ) mgj k=m (bnrfm+l )N kfk+l )
n-1

_1 n-1 %
= 1 DT (L b4
=J



after lengthy but straightforward calculatlons.
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Resumo

0 trabalho de Montroll para deduzir o propagador do oscilador
harmonico dependente do tempo é generalizado para obter o propagador do
oscilador harménico amortecido também dependente do tempo.



