Exact Propagator for Darnped Time-Dependent Harmonic Oscillator

BIN KANG CHENG

Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19081, Curitiba, 80.000, PR. Brasil

Recebido em 5 de abril de 1983

Abstract The work of Montroll inderiving the propagator of time-dependent harmonic oscillator is generalized to obtain the propagator of time-dependent harmonic oscillator with constant damping term.

1. INTRODUCTION

From Feynman's formulation of nonrelativistic quantum mechanics the propagator, probability amplitude for a particle togofrom the point (x^1, t^1) to the point (x^1, t^1) , can be expressed as $x^{1,2,3}$

$$K(x^{1}, t^{1}; x^{1}, t^{1}) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp\{(i/h) \int_{t}^{t^{1}} L(x, x, t) dt\} \ Dx(t)$$
 (1.1)

where $L(x,\dot{x},t)$ is the Lagrangian of the dynamical system considered and Dx(t) indicates that the integral is over all paths with fixed endpoints (x',t') and (x'',t'').

For time-dependent harmonic oscillator, $Montroll^4$ first transforms the path integral (1.1) into the Gaussian integral

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp\{i(y^{T}Ay + 2b^{T}y)\} \prod_{j=1}^{n} dy_{j} = (i\pi)^{n/2} (\det A)^{-1/2} \exp(-ib^{T}A^{-1}b)$$
(1.2)

multiplied by a function of x', x'' and τ . Here we have defined $\tau = (t'' - t')/n$ for later convenience. He then carriers out calculations as $\tau \to 0$ (or $n \to \infty$). His method has recently been applied for evaluating the propagator of time-dependent forced harmonic oscillator⁵. In the present work the same method has been generalized further to calculate the propagator of time-dependent harmonic oscillator with constant damping.

In Section 2, we are able to transform our path integral into the Gaussian integral (1.2) multiplied by a function of x', x'' and τ .

Work supported in part by the CNPq (Brazilian Government Agency)

In Section 3, we show the details of calculation (and also in the Appendix) as $\tau \to 0$ and we write down the propagator in terms of f(t) and g(t), which are respectively the solutions of time-dependent harmonic oscillator with damping and with antidamping. Finally, we discuss the result in Section 4.

2. FORMULATION

For time-dependent harmonic oscillator with constant damping term, the equation of motion is

$$\ddot{x} + \gamma \dot{x} + \omega^2(t)x = 0 \tag{2.1}$$

where $\omega(t)$ is a time-dependent frequency and yis a constant damping coefficient. Eq. (2.1) can be obtained from the Lagrangian⁶

$$L(x, \dot{x}, t) = e^{\gamma t} m [\dot{x}^2 - \omega^2(t) x^2] / 2$$
 (2.2)

In spite of its interpretation difficulties in quantum mechanics 7,8 , we are going to use (2.2) as our Lagrangian. Now the propagator defined by (1.1) can be written as

$$K(x'',t'';x',x') = \lim_{n\to\infty} \left[\prod_{j=1}^{n} (me^{\gamma t} j/2\pi i \tilde{n}\tau)^{1/2} \right] \int_{-\infty}^{\infty} \dots \int_{\infty}^{\infty} \exp\left\{ (i\tau/2\tilde{n}) \right\} \times \left[m\tau^{-2} \sum_{j=1}^{n} e^{\gamma t} j(x_{j} - x_{j-1})^{2} - m \sum_{j=0}^{n-1} e^{\gamma t} j \omega_{j}^{2} x_{j}^{2} \right] \prod_{j=1}^{n-1} dx_{j}$$
(2.3)

by Feynman's definition. The extra factor $\exp(\gamma t_j)$ is necessary for including dissipative effect. For later convenience we have set T=(t''-t')/n and $\mathbf{r}_j=r(t'+j\tau)$, r'=r(t') and r''=r(t'') for any function r(t). Now we let $y_j=\exp(\gamma t_j/2)\left(m/2\hbar\tau\right)^{1/2}x_j$, then (2.3) can be rewritten as

$$K(x^{11}, t^{11}; x^{1}, t^{1}) = \lim_{n \to \infty} (i\pi)^{-n/2} (me^{\gamma t^{11}}/2n\pi)^{1/2} \exp\left\{ (i\tau/2n) \left[m\tau^{-2} (e^{\gamma t^{1}}x^{12}) + e^{\gamma t^{11}}x^{1/2}) - me^{\gamma t^{1}}\omega^{1/2}x^{1/2} \right] \right\} \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} \exp\left\{ i \left[\sum_{j=1}^{n-1} (1 + e^{\gamma t} \omega_{j}^{2}\tau^{2})y_{j}^{2} - 2 \sum_{j=0}^{n-1} e^{\gamma \tau/2} y_{j}^{2}y_{j+1} \right] \right\} \prod_{j=1}^{n-1} dy_{j}$$

$$(2.4)$$

since $dx_{j} = \exp(-\gamma t_{j}/2) (2\hbar \tau/m)^{1/2} dy_{j}$.

By comparing (1.2) and (2.4) we find that the matrix A is of the form

with $a_{j}=1+\exp(\gamma\tau)$ - $\omega_{3}^{2}\tau^{2}$ and $d=\exp(\gamma\tau/2)$. The column matrix b has the following elements;

$$b_1 = -y' \exp(\gamma \tau/2) = -c\tau^{-1/2} \exp(\gamma t_1/2) x^1$$

$$b_j = 0 \quad (j = 2, 3, ..., n-2)$$
(2.6)

and

$$b_{n-1} = -y'' \exp(\gamma \tau/2) = -c\tau^{-1/2} \exp[\gamma(t''+\tau)/2]x''$$

Here we have set $c = (m/2\pi)^{1/2}$. By substituting (1.2) into (2.4) we obtain

$$K(x^{11}, t^{11}; x^{1}, t^{1}) = \lim_{\tau \to 0} (me^{\gamma t^{11}} / 2\pi i \tilde{n} \tau \det A)^{1/2} \exp\{iB(x^{11}, x^{1}, \tau)\}$$
 (2.7)

and

$$B(x^{11}, x^{1}, \tau) = (m/2\pi\tau) (\exp(\gamma t_1) x^{12} + \exp(\gamma t^{11}) x^{112}) - b^{T} A^{-1} b$$
(2.8)

We have assumed that the factor $\exp(-im \exp(yt^{\dagger}) \omega^{\dagger 2}x^{\dagger 2}\tau/2\hbar)$ in (2.4) to be one as $\tau \to 0$. Now we are only left to calculate the limit values of τ det A and $B(x^{\dagger \dagger}, x^{\dagger}, \tau)$ as $\tau \to 0$. With the help of (2.5) - (2.8), the calculations will be carried out in the next section and in the Appendix.

3. CALCULATION

From the matrix A we define A, and D, as the following $\mbox{\tt deter-minants}$

$$A_1 = a_1, A_2 = \begin{vmatrix} a_1 & -d \\ -d & a_2 \end{vmatrix}$$
, $A_3 = \begin{vmatrix} a_1 & -d & 0 \\ -d & a_2 & -d \\ 0 & -d & a_3 \end{vmatrix}$, ..., $A_{n-1} = \det A$

$$D_{n-1} = a_{n-1}, \quad D_{n-2} = \begin{vmatrix} a_{n-2} & -d \\ -d & a_{n-1} \end{vmatrix}$$

$$D_{n-3} = \begin{vmatrix} a_{n-3} & -d & 0 \\ -d & a_{n-2} & -d \\ 0 & -d & a_{n-1} \end{vmatrix}, \dots, D_1 = \det A$$

It is easily to show that A. and D_j satisfy the recurrence relations

$$A_{j+1} = a_{j+1}A_j - d^2A_{j-1}$$
, $A_j = 1$ (1 $\leq j \leq n-2$) (3.1)

and

$$D_{j-1} = a_{j-1}D_j - d^2D_{j+1}, D_1 = 1 \quad (2 \le j \le n-1)$$
 (3.2)

Furthermore, eqs (3.1) and (3.2) can be transformed into the finite-difference equations

$$(D_{j+1} - 2D_{j} + D_{j-1})/\tau^{2} = -\omega_{j-1}^{2}D_{j} - \gamma(D_{j+1} - D_{j})/\tau$$
 (3.3)

and

respectively. From eqs (3.1) and (3.2) we see that the end conditions of A_3 and D_3 are .

$$D_{n-1} = a_{n-1}^{2} + 0(\tau) \approx a_{n-1} = A_{n-1}$$
 (3.5)

$$(D_{n-1} - D_{n-2})/\tau = \{a_{n-1}(1-a_{n-2}) + d^2\}/\tau \approx -(1/\tau)$$
 (3.6)

and

$$(A_2 - A_1)/\tau = \{a_1(a_2 - 1) - dt/\tau\} \approx 1/\tau$$
 (3.7)

for small τ . In order to overcome the difficultieç of divergence in eqs (3.6) and (3.7), we now introduce f_j and g_j by

$$f_{\vec{j}} = TD_{\vec{j}}$$
 and $g_{\vec{j}} = TA_{\vec{j}}$ (3.8)

With the help of eqs (3.5) - (3.7), eqs (3.3) and (3.4) can be rewritten as the differential equations

$$\mathbf{f} + \gamma \dot{\mathbf{f}} + \omega^2(t) \mathbf{f} = 0 , \mathbf{f}^{11} = 0 , \dot{\mathbf{f}}^{11} = -1$$
 (3.9)

and

$$\ddot{g} - \gamma \dot{g} + \omega^2(t)g = 0$$
, $g' = 0$, $\dot{g}'' = 1$ (3.10)

in the limit as $\tau \rightarrow 0$. Therefore, we obtain

$$\lim_{\tau \to 0} (\tau \text{ det A}) = \lim_{\tau \to 0} (\tau D_1) = \lim_{\tau \to 0} f_1 = f(t') = f' = g''$$
 (3.11)

From eqs (3.1), (3.2) and (3.8) we discover that the f3 and gj are related through the formula

$$f_{j+1}g_{j} - d^{2}f_{j+2}g_{j-1} = f_{j}g_{j-1} - d^{2}f_{j+1}g_{j-2} = \tau^{2} \det A = \tau f_{1} = \tau g_{n-1}$$
(3.12)

Hence

$$g_{j} = \tau f_{1} f_{j+2} (f_{j+1} f_{j+2})^{-1} + d^{2} f_{j+2} g_{j-1} / f_{j+1}$$

$$= \tau f_{1} f_{j+2} \{ (f_{j+1} f_{j+2})^{-1} + d^{2} (f_{j} f_{j+1})^{-1} \} + d^{4} f_{j+1} g_{j-2} / f_{j}$$

$$= \dots = \tau f_{1} f_{j+2} \sum_{k=1}^{j+1} (f_{k} f_{k+1})^{-1} d^{2} (j-k+1)$$

$$(3.13)$$

In particular, we have

$$\tau^{2} \sum_{k=1}^{n-1} (f_{k} f_{k+1})^{-1} d^{2(n-k)} = d^{2} g_{n-2} / g_{n-1}$$
 (3.14)

for j = n-2. Using eqs (2.5) and (3.13) we can show that

$$b^{T}A^{-1}b = \sum_{j=1}^{n-1} (f_{j}f_{j+1}d^{2j})^{-1} \sum_{k=j}^{n-1} b_{k}f_{k+1}d^{k})^{2}$$
 (3.15)

The above relation is proved in the Appendix.

Now substituting eq (2.6) into eq (3.15), we get

$$b^{T}A^{-1}b = (f_{1}f_{2}d^{2})^{-1} \left\{ -c\tau^{-1/2} \left[e^{\gamma t_{1}/2} f_{2}dx' + e^{\gamma(t^{11}+\tau)/2} f_{n}d^{n-1}x'' \right] \right\}^{2} + \sum_{j=2}^{n-1} (f_{j}f_{j+1}d^{2j})^{-1} \left\{ -c\tau^{-1/2} e^{\gamma(t^{11}+\tau)/2} f_{n}d^{n-1}x^{11} \right\}^{2}$$

$$= (c^{2}f_{2}/\tau f_{1})e^{\gamma t_{1}} x^{12} + (2c^{2}/f_{1})e^{\gamma t^{11}} x^{1}x^{11}$$

$$+ c^{2}\tau \left[\sum_{k=1}^{n-1} (f_{k}f_{k+1})^{-1} d^{2}(n-k) \right] e^{\gamma t^{11}} x^{112}$$

$$(3.16)$$

after lengthy but straightforward calculations. Substituting eq (3.16) into eqs (2.7) and (2.8), the propagator takes the following form

$$K(x^{1}, t^{1}; x^{1}, t^{1}) = \lim_{\tau \to 0} (me^{\gamma t^{1}}/2\pi i\hbar \tau \det A)^{1/2} \exp\{i\left[a_{\tau}x^{12} + b_{\tau}x^{1}x^{1} + c_{\tau}x^{112}\right]\}$$
(3.17)

where

$$a_{\tau} = (me^{\gamma t_1}/2\hbar\tau)(1-f_2/f_1)$$

$$b_{\tau} = -me^{\gamma t''}/\hbar f_1$$

and

$$c_{\tau} = (me^{\gamma t^{11}}/2\hbar\tau) \left[1 - \tau^2 \sum_{k=1}^{n-1} (f_k f_{k+1})^{-1} d^{2(n-k)}\right]$$

As $\tau \rightarrow 0$, we finally obtain

$$\lim_{\tau \to 0} \alpha_{\tau} = \lim_{\tau \to 0} (me^{\gamma t_1}/2\hbar f_1) (f_1 - f_2)/\tau = - (me^{yt_1} f'/2\hbar f') (3.18)$$

$$\lim_{\tau \to 0} b_{\tau} = \lim_{\tau \to 0} (-me^{\gamma t^{11}}/\hbar f_1) = -(me^{\gamma t^{11}}/\hbar f^1)$$
(3.19)

and

$$\lim_{\tau \to 0} c_{\tau} = \lim_{\tau \to 0} (\text{me}^{\gamma t^{1}}/2\hbar\tau) (\mathbf{i} - \text{e}^{\gamma t}g_{n-2}/g_{n-1})$$

$$= (me^{\gamma t^{1}}/2\hbar) (-\gamma + \dot{g}''/g'') \tag{3.20}$$

Here we have used eq (3.14) to derive eq (3.20).

Substituting eq (3.11) and (3.18) - (3.20) into eq (3.17), we obtain our main result

$$K(x'',t'';x',t') = (me^{\gamma t''}/2\pi i \tilde{n} f')^{1/2} \exp\{(m/2i \tilde{n} f') [\dot{f}'e^{\gamma t'} x'^2 + 2e^{\gamma t''} x'x'' + (\gamma f' - \dot{g}'')e^{\gamma t''} x''^2]\}$$
(3.21)

Here we assume that $f'=g''\neq 0$ for excluding catastrophic phenomenon. The propagator has been written in terms of f(t) and g(t) which are the solutions of the equation of motion of time-dependent harmonic oscillator with damping term and with antidamping term, respectively. For $\gamma=0$, the above equation is equivalent to eq (3.13) with q(t)=0 in Ref. 5 as we expect.

4. RESULT

It can easily be shown that the solutions of eqs (3.9) and (3.10) are

$$f(t) = s(t)e^{-\Upsilon(t-t^{11})/2} \sin[\overline{\nu}^{11}-\nu(t)]$$
 (4.1)

and

$$g(t) = s(t)e^{-\gamma(t'-t)/2} \sin[\overline{\nu}(t) - \nu] \qquad (4.2)$$

respectively, where s(t) and v(t) are the amplitude and the phase of time-dependent harmonic oscillator with constant damping (or antidamping). In order to satisfy their boundary conditions, we let

$$\ddot{s}(t) - s^{2}s^{-3}(t) + \Omega^{2}(t)s(t) = 0 , \Omega^{2}(t) = \omega^{2}(t) - y^{2}/4$$
 (4.3)

and

$$s^2(t)\dot{v}(t) = s^{\dagger} \tag{4.4}$$

We also have $s^1 = s^{ii}$, $v^1 = \dot{v}^{ii}$ and $s^1\dot{v}^1 = s^{ii}\dot{v}^{ii} = 1$ since $f^1 = g^{ii}$. With the help of eqs (4.1) - (4.4), eq (3.21) can be rewritten as

$$K(x'',t'';x',t') = [me^{Y(t'+t'')/2} \dot{v}'/2\pi i \tilde{h} \sin \Phi(t'',t')]^{1/2} \times$$

$$\exp\{(m\dot{v}'/4i\hbar)[(2\dot{s}'-\gamma s')e^{\gamma t'}x'^2-(2\dot{s}''-\gamma s'')e^{\gamma t''}x''^2]\}$$

$$\exp \{(im\dot{v}^{1}/2\hbar) [e^{\gamma t^{1}}x^{12} + e^{\gamma t^{11}}x^{112})\cot \Phi(t^{11},t^{1})\}$$

$$-2e^{\gamma(t'+t'')/2} x'x'' \csc \Phi(t'',t')]$$
 (4.5)

with $\Phi(\alpha,\beta) = \nu(\alpha)$ - $\nu(\beta)$ for any two arbitrary time a and β . When $\omega(\mathbf{t})$ is a constant frequency ω_0 , eq (4.5) reduces to the propagator evaluated by Papadopoulos⁹ and is equivalent to (80) without perturtive force of Khandekar and Lawande¹⁰. However, we need both $\mathbf{f}(t)$ and g(t) to evaluate the propagator. It seems to agree with the idea of Feshbach and Tikochinsky¹¹.

APPENDIX

The elements of A^{-1} , represented by a_{jk}^{-1} , are determined by finding the cofactor of **A.** Therefore, we have from eq (2.5) that

$$a_{jk}^{-1} = d^{j-k} A_{k-1} D_{j+1} / D_1 = d^{j-k} g_{k-1} f_{j+1} / \tau f_1 , \qquad j > k$$
 (A.1)

and

$$a_{jk}^{-1} = d^{k-j} A_{j-1} D_{k+1} / D_1 = d^{k-j} g_{j-1} f_{k+1} / \tau f_1 , \qquad j \le k$$
 (A.2)

With the help of eqs (3.13) - (3.14) and (A.1) - (A.2), we obtain $b^{T}A^{-1}b = \sum_{j,k=1}^{n-1} b_{j}a_{jk}^{-1}b_{k}$ $= (1/\tau f_{1}) \left\{ \sum_{k=1}^{n-2} b_{k}g_{k-1}d^{-k} \sum_{j=k+1}^{n-1} b_{j}f_{k+1}d^{j} + \sum_{j=1}^{n-1} b_{j}g_{j-1}d^{-j} \sum_{k=j}^{n-1} b_{k}f_{k+1}d^{k} \right\}$

$$= \sum_{k=1}^{n-2} b_k f_{k+1} d^{-k} \left\{ \sum_{m=1}^{k} (f_m f_{m+1})^{-1} d^{2(k-m)} \right\} \sum_{j=k+1}^{n-1} b_j f_{j+1} d^j$$

$$+ \sum_{j=1}^{n-1} b_j f_{j+1} d^{-j} \left\{ \sum_{m=1}^{j} (f_m f_{m+1})^{-1} d^{2(j-m)} \right\} \sum_{k=j}^{n-1} b_k f_{k+1} d^k$$

$$= \sum_{j=1}^{n-1} (f_j f_{j+1} d^{2j})^{-1} \sum_{m=j}^{n-2} \sum_{k=m+1}^{n-1} (b_m f_{m+1} d^m) (b_k f_{k+1} d^k)$$

$$+ \sum_{j=1}^{n-1} (f_j f_{j+1} d^{2j})^{-1} \sum_{m=j}^{n-1} \sum_{k=m}^{n-1} (b_m f_{m+1} d^m) (b_k f_{k+1} d^k)$$

$$= \sum_{j=1}^{n-1} (f_j f_{j+1} d^{2j})^{-1} (\sum_{k=j}^{n-1} b_k f_{k+1} d^k)^2$$

after lengthy but straightforward calculations.

REFERENCES

- 1. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
- 2. R.P. Feynman and A.R. Hibbs, *Quantum Mechanics and Path Integrals* (McGraw-Hill, New York, 1965).
- 3. L.S. Schulman, *Techniques and Applications of Path Integration* (John Wiley & Sons, Inc., New York, 1981).
- 4. E.W. Montroll, Commun. Pure Appl. Math. 5, 415 (1952).
- 5. Bin Kang Cheng, Rev. Bras. Fis. 13, 220 (1983).
- 6. P. Ravas, Nuovo Cimento Suppl. 5, 363 (1957).
- 7. R.W. Hasse, J. Math. Phys. 16, 2005 (1975).
- 8. Daniel M. Greenberger, J. Math. Phys. 20, 762 (1979).
- 9. G.J. Papadopoulos. J. Physics A7, 209 (1974).
- 10. D.C. Khandekar and S.V. Lawande, J.Math.Phys. 20, 1870 (1979).
- 11. H. Feschbach and Y. Tikochinsky, contribution to A Festschrift for I.I. Rabi, edited by L. Motz (New York Academy of Sciences, New York ,
- 1977).

Resumo

O trabalho de Montroll para deduzir o propagador do oscilador harmônico dependente do tempo é generalizado para obter o propagador do oscilador harmônico amortecido também dependente do tempo.