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Abstract W define collective modes for the quantized radiation field
in a one-dimensional optical cavity coupled to a semi-infinite outside
region and consider the interactions between the neighbouringcollective
modes to show how these interactions modify the time evolution of the
free radiation field and investigate the limitations thatthey introduce
on the exponential damping law. The procedure and results are prelimi-
nary towards the investigation of the single mode laser operation and
Bose "condensation'' aspect of laser behaviour near threshold.

1. INTRODUCTION

In a previous work', some fundamental aspectsof the laser the-
ory, such as the line narrowing mechanism and the fluctuation-dissi-
pation theorem, were investigated via a continuous spectrum of modes
generated by a semi-infinite one-dimensional optical cavity. This treat-
ment is based on a model of cavity2 coupled to the outside region and has
the advantage of including the leakage of radiation fieldfromtheoptical
cavity in a natural way, instead of the usual phenomelogical loss intro-

duced through a ficticious reservoir®.
. . I .
However, in the mentioned work , we analysed the transient and

stationary solutions for the radiation field in the single mode oper-
ation. This approximation implies that we are neglecting the interac-
tions among the collective modes generated by the optical cavity, due to
the overlap between the neighbouring cavity bands. This is a reason-
able approximation whenever the coupling between the optical cavity and
the outside region is weak.

Inthe present work, we take into account the overlaps
between the collective modes and investigate some modification they in-
troduce in the solutions found in previous work. This treatment
also allowsone to get an improved insight into the question of Bose
''condensation'' aspect of laser behaviour.near threshold. This  paper

deals with the free radiation field. In a future paper, we will include
Partially supported by CNPq.
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the active atoms inside the optical cavity in order to treat the com-

plete problem.

2. MODEL AND FIELD MODES

In order to simulate a continuous spectrum of field modes we
use a cavity model as a free space region bounded by two plane parallel
plates, ona of which is ideally reflecting, placed at =%, whereas the
other one is semitransparent, placed at =0, both perpendicular to the
z ~ axis. We call 5 E [O,Jl]the internal region and 2z € (-°°,0], the ex-
ternal one.

We take the plate coating the semitransparent window as a di-
electric film which is modelled as a limiting case of a very thin layer

with a very large dielectric constant, given by
e(@) = ¢, [0 +né(z)] (1)
where 8(z) is the Dirac delta function and n is a real parameter with
dimensions of length, which determines the transparency of the window.
The normal modes of propagation are stationary solutions of
Maxwell's equations that satisfy the boundary conditions. By assuming
the electric field linearly polarized in x-direction: g(z,t) = E(z,t) &

and making the usual anzats for the Fourier field components

E’k(z,t) = Uk(z) exp(-iwkt) (2)

we obtain, after some straightforward calculation, the normal modes for

the entire cavity’

0 (2) = Mym)sin K (2-2) , z € [0,4]
_ (3)
U1.(z) =

K

1 (a) = @m'/* sin(ia-8,), 5 (==,0]

where, for the case of a low-transmiting window, M'i(n) is the Lorentzian

1ineshape

o) = @) 1 02/ 07 ¢ (0,0 g

and I‘n is the linewidth given by!

I‘n = eg/(mm)? = e/Ainz (5)
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= = . - . . [
where A = nkn— nnw/L. w, . is the n-th Fox-Li quasimode

Wy, = ¢ knE enn/% = CAOT’L/T] (6)

ék is a phase shift" , and ¢ is the speed of light. The case of a low~
-transmiting window results when we assume that the bandwidth I‘n is
small, in the sense that

r<< fw o= = en/% (7)

Imon wo,n + 1‘

The above results, such as those contained in egs. (3)-(6), are
reasonable approximations when the transmission throughout the window
is so small that we can neglect the overlaps between the Lorentzians
Mk(h), Mk(n'). In fact, that was the case refered in our work andthat
was the situation in which we assumed the single-mode operation.

Now, we consider the case in which the transmission is
small - but not as assumed in the refered work - in such a way that the
resulting lineshape of the cavity modes becomes no more a set of non-
-overlaping Lorentzian lineshapes, as given by eq. (3). So, as a conse~
quence, we must substitute the Lorentzians Mk(n) by another lineshape
function Lk peaked around the Fox-Li quasimodes frequenciesl.

In this paper, we make a less restricted approximation: we
assume that the resulting lineshape Lk can be described as a superpo=~
sition of overlaping Lorentzians {Mk(n)}. We apply this procedure

in the following section.

3. COLLECTIVE OPERATORS FOR THE RADIATION FIELD INSIDE THE CAVITY

By using the normal field modes (eq.(3)) and following the
usual quantization procedure, the Hamiltonian for the free radiation

field is (neglecting zero point energy)

00

+
B = Jo w, a a, dk (8)
+ . . .
where a, (a.k) creates (annihilates) photons with momentum kn in the

entire cavity 2z E (-00,9,:[, with the usual canonical comrnutation re-

lations
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B = B i1 -0
(9)

[ak,az.] = §(k-k")

The electric field operator, as expressed in terms of the operators a

and aZ is
[ *
E(z,t) = Eox (az, + ak)Uk(z)dk (10)
0
where E . (wk/Ze )1/2 wy = ck.

|n order to define the collective operator for the radiation

field inside the cavity we refer to the electric field given by eq.(10)

in the region z g [0,@
) (a0 - rEok (@f + a) uf) @)a
0

= Jn Eok (ai + ak) Ly sin k(z-2)dk

()
as
E(i) (z,t) = EL L; Eok(az + ak)Mk(n)sin k(2-%)dk
7
:g 3 sin kn(z-l) jB Mk(n) (az + ak)dk
" (12)
where the approximation
Eop Sin k(z—ﬁL)Mk (n) = Eoknsin kn(z—l)Mk(n) (13)

has been used, since Eok sin k(z-%) is a slowly varying function when
compared to the Lorentzian function. So, instead of performing the in-
tegral as in eq. (11) we integrate in a band Bn’ which has a Lorentzian
profile given by I\/‘((n), and afterwards sum over all the bands. tn each
band B, ve consider k running in the domain k € [0,).

We now consider the internal electric field operator F’( )(z t)
which, according to egs. (3) and (I 1),can be written in the form

(%) .
E'Y (2,¢) =£ MEy;  sin k, (2~2) a+ a) (14)
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where M is a normal ization factor, and

-_— 1 *
An =3 L Mk(n) a, dk
I (15)
+ +
A?’l = " JO Mk(n) ak dk

are the collective operators: AZ(An) creates (annihilates) photons in
the band (collective mode) Bn specified by the lineshape factor Mk(n).
At this point we consider the (small) overlaps between the

neighbouring bands in the following way: by using egs. (9) it iseasy to

show that
@, 4,0 = [, 4,0 =0 (16)
and m
+ 1
@, 4] :M—zj M, ()M, (") K (17)
0

So, if we neglect the overlap between the Lorentzians I\/Ik(n),Mk(n'), then

Mk(n)Mk(n') =0, n'#n (18)
and setting the normalization constant
M= ( f 1 (n) ax )2 (19)
9
we obtain
(4,0 400 =8, 0 (20)

However, if we consider the mentioned overlap, we must calculate the in-
tegral 1n eq. (17). In order to do that, we use the Fourier transforms

of Mk(n), Mk(n') and obtain, after some algebra (Appendix)}

+
(4, 4,0 =P, [s*+8%+1)/7] (21)
where P_l/z(X) is the toroidal function®and

77 Lo ™ o) /T (22)

fos]
n

— ] 2 .
I‘n/l‘n| = (n'/n)* = 1

since, according to eq. (5)

(23)
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is a slowly-varying function of the ressonance frequency within the

optical dornain, where n - 10°.
Using egs. (21) and (22) we obtain for n' =n-+s =20

[, 471 =P ,0) =1 (24)

But forn' # n this implies, according to egs. (7) and (22) s=Mw/T >>1.

This leads to the toroidal function P (z) in the assymptotical 1imit.

-1/2
So, a little algebrical procedure gives for n' = ntl
@470 =Py, (s2/2) > 2/s (25)

The result 2/s appearing in the right hand-side of eq. (25) measures the
degree of non-orthogonality between two neighbouring collective modes.
In the next section we use eqgs. (24) and (25) in order to investigate
the influence of the interactions between collective modes on the free

radiation field.

4. TIME EVOLUTION OF THE FREE FIELD INSIDE THE CAVITY

We consider, for simplicity, the case of only two collec-
tive modes in the optical cavity, and use the density operator3 p(t) to

describe the radiation field inside the cavity. So, in terms of the
3,6

collective operators and adopting the antinormal order We set
] 2 + 2/|
p(t) = c @A A" ahH 26
The equation of motion for the density operator is”’® (n=1)
d , :
Zi—g' =<Lp + Llp (27)

where L is the effective Liouville operator

o = [7 0] (28)
where Ho is the effective Hamiltonian

Hy=Juw, A4, (29)
n
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and L is the loss operator

+

J] + h.c. (30)

Lo =] T, [4,,04
J Jd = 4d:
where h.c. stands for the hermitian conjugate. The non-hamiltonian dy=-
namic, as expressed by eq. (27), is a direct consequence of the fact
that the system we are considering s an open system. It should be
stressed that eq. (27) is valid if we neglect the interactions between
the field modes. We correct it afterwards through eq. (33), in or-
der to introduce these interactions.
Substituting eq. (28)-(30) in eqg. (27) and making use of the
interaction picture, where
itH, -itH,
p,=e p e (31)
and omitting, for brevity, the index I, we obtain
dp/dt =T E;Anp + pA;An - ZAnpA;:[
+ T, E;;,An,m oAl A, - ZAn,pA;Z{ (32)

At this point we introduce the interaction between the collective modes
into the equation of motion (eq. (27)) through the use of eq. (25):
although P is in the antinormal order, the right hand-side of eq. (32)
is not; in order to set it also in the antinormal order we use eq. (26)

for p and the slight generalized identities
r

BA:Z"/Z)A; s n' =7

+mi _
En’ An] =4 (33)
(2/8Y8a™s58F st = nz

n n
and

m . -

. - aAn/BAn ; nl=mn
4+ N
]Eln:Any_-l = { (34)
-(Z/S)SATL/BAn ,n' =t

where the eqs. (24) and (25) have been used. We obtain (put I‘n=I‘n.=I‘)
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o, P4 3 (pay) L 2,0 +8(pA;,)

+ +
dt %, Iy 84, 24>,
(35)
+ 2 A, % + 33: A+, + A % + ap+ A+J
R GV SR ™34, aar,
n n n n

The antinormal form, as in the foregoing equation, is appropriate for
the use of the coherent states. So, we now make use of the coherent

representationg, where
1 2
= — > |
p(t) = J I{vn} <{”n}' pd {vn} (36)
and |{v. }> is a collective coherent state:” 4 |{v }>= v |{v }>and
n n n n n

P=P ({vn} s {q:}, t) is a quasiprobability function®. In this way,

for the case of only two modes we obtain, after some algebrical manipu-

lations .
* *
ap ; {?(vnP) 8(vnP) 8(vn,P) a(vn,P)
— = + + +
* *
dt v, v w, avn,
(37)
2 [ 3P x P 3P % OP 1
+ = |V + v —_+ + 0¥ ——
s |n 55;' n' o "o n av*lll
n n n
Setting
v =2 + 1y
" , (38)
vy = x' + zy!

the imaginary parts in the right hand-side of eq. (37) cancel, leading

it to the form

ég = T[?;;(;P) + %;].(;'P)
dt
(39)

> > > >
+ (r.V;uP + r'.V;Pi}

[N

> > . . :

where r(r') is a vector with components x,y(x',y'). It is easy to see
that if we neglect the overlaps between collective modes then the
quasiprobability P(z,r',t) becomes separable: P(?,?',t)»PI(;,t).PZ(;gtl

In this particular case eq. (39) decouples in two independent equations
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and gives

dpl > >
ZZ—_— + VI-; (-FI’PI) =0 (40)
t

which is a continuity equation whose solution ist?
7(t) = »(0)exp(-Tt) (1)

A similar equation is valid for ;‘ (¢). This sesult shows that, when the
interaction between the collective modes is neglected, the time evol-
ution of the free radiation field inside the cavity (z E I:O,JL]) is of
exponentlal-type. The inclusion of the interaction between these modes
destroy this exponential damping behaviour. In order to show this
we go back to eq. {39} and,assuming that the interaction s small, we
set

P(r,»',t) = Py (5,7 ,6)P, (3,7, %) (42)

in such a way that

(1/pyv.p. >> (1/P )V P
Y e (43)

(7P)V Py << (I/PZ)VP,PZ

Tnis means that we are assuming P, (P,) is a slowly-varying function of
7' (#) when compared to P,{(P,). Siibstituting eq. (42) back in eq. (37) and

using the approximation given in (43) we obtain the solutions

7)) = 3(0) E . (Z/SZ)th;Ie-Ft (b4)

and

21 () = 2(0) [(z/s)rt]e'” (45)
where the initial condition I_:i(O) = 0 has been used. This is the easest
situation to investigate the influence of one mode on another, via the
interaction. Also, it is the most favorable situation in ordertoobtain
a solution corresponding to only one excited eollective mode. It iseasy
to verify that if we neglect the mentioned interaction we recover in
eq. (44) the result given by eq. (41).

The results contained in eqgs. (44) and (45) allows ustoderive

the restriction to the exponential damping. In fact, according to eq.



(44), the exponential damping for () is valid for times srnall enough

such that
(2/8)Tt << | (46)
which gives
SRR o
where  T,=%/c , T = r o= A7Zz T,. For a low-transmiting window that

we are assuming throught this paper A; >% 1 (Af) $ 10° for transmission
less than one percent)and it ispossible toicharacterize the exponential
damping for several life-times of the free radiation field in the in-
ternal cavity. For times other than those quoted in eq. (46) we seethat
»'(¢) cannot be neglected, since PUE) £ 0 irrespective of the initial
condition F' (O) = 0, and the exponential damping behaviour ceases to be
valid. This shcws that the interaction between the collective modes, due
to the transmission throughout the window, introduces an upper bound to
the exponential damping and, at:the same time, forbides steady-stateex-
citation into a single mode operation.

According to the foregoing results, whenever we try to excite
the single-mode ;(t), we also excite others neighbéurihg modes
;’(t),;”(t),..., etc.This is not a surprising result. However, the present
treatment, in terms of a more realistic model of cavity yielding inter-
acting coliective modes, besides being a non-phenomenological procedure,
enables one to get a more satisfactory approach of the Bose ""condensation"'
aspect of the laser behaviour near (bellow) threshold.

W have also analyzed this question in the appropriate context

of a many-mode theory of the present variety and will publish elsewhere.

APPENDIX

In this Appendix we derive eq. (21). To this end, we set

o, A5 = ;J M () M, (n")dk (A1)
0

and take the Fourier transform of Mk(n)

- e

H(n) = (8, /7))

-0

(1) gy (A2)
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where u = (wkn - won)/l"n, and obtain

# () = (24 /m) K, (ly]) (A3)
where Ko(ly!) is the modified zero order Bessel function of second
kind. Using? o

2 _ 2 =

M = JO Mk(n)dk ﬂ/an (A4)

and {A,), (A.) in (A,) we find
2 3 ! , N n'
WrOT T,

o T, .
Bodnd = | K UsDE (G Do 7 a

(A5)
which!! Jleads to eq. (21).
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Resumo
Séo definidos modos coletivos para o campo de radiagdo quanti-

zado em uma cavidade 6ptica unidimensional acoplada a uma regido exter-
na semi-infinita. Levamos em conta as interagoes entre os modos coleti-
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vos vizinhos para mostrar como elas modificam a evolugdo temporal do
campo de radiagdo livre e 1imitacoes que impdem ao decaimento exponen-
cial. O procedimento e resultados sdo preliminares para a investigagao
da operacdo laser em "modo tnico', bem como o aspecto da ‘'‘condensagao''
de Bose, que ocorre no laser proximo do limiar.
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