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Abstract  The use of approximate microscopic theories in a~1¢0 scattering
is investigated. The Orthogonality Condition Model (OCM) with both the
direct potential of the Resonating Group Method (RGM) and withan effec-
tive local potential, V .., derived from Kernels of Generator Coordi-
nate Method (GCM) is employed to study collisions at QM energies up to
30 MeV, for all relevant partial waves. Although the predictions of the
QM are consistent with "exact' RGM results in both cases, the nuclear
phase-shifts obtained with the effective potential are better. W no-
tice the presence of ambiguities ir the derivation of V___., The nature
R . - eff
of such ambiguities is discussed.

1. INTRODUCTION

In the last decade the effects of Pauli Principie incollisions
of light heavy ions have been studied by several authorsI.These effects
can be exactly accounted for in microscopic theories as the Resonating
Group Method!’? (RGM) or the basically equivalent Generator Coordinate
Method?!’? (GCM), which have the additional advantage of allowing a
description of the nucleus-nucleus potential in termsofnucleon-nucleon
interactions. The RGM leads to a Schrgdinger-type equation for the
relative motion with a local folding potential plus a highly compli-
cated non-local potential in which the effects of the Pauli Principle
are fully contained. Although the application of these methods to pairs
of very light particies (n,a,He3H® is relatively easy, it becomes
increasingly more cornplicated for collisions between heavier nuclei.

As a simple alternative for such 'exact'' theories Saito pro-
posed the Orthogonality Condition Model* (OCM). In the OOM the non-lo-
cal part of the RAM Hamiltonian is approximated by a simpler separable
potential, derived exclusively from the local RM potential, v with
the help of the projector onto the subspace of states satisfei’ng the

Pauli Principle. Saito's model was sucessfully &pplied to collision
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between very light nuclei, as a-particles, but itproveda poor approxima-
tion® to calculations based on some commonly used nucleon-nucleon in-
teractions or to collisions between heavier systems, where it would be
most useful.

The validity of the OCM can, however, beextended® if it is based
on conveniently chosen effective local potentials, rather than on the
local part of the RM potential. In ref. 5 a prescription for deriving
such effective potentials was introduced. This prescription was used to
study5 a-o and '®0-1%0 scattering and also’ the collision of a-par-
ticles with n, 3H and %He. The results obtained for the very light sys-
tems were quite good, including those of calculations with nucleon-nu-
cleon interactions for which the original version of the OOM with the
potential V,, failed. On the other hand, the results for 169-160  scat-
tering were unsatisfactory, in spite of being better than those of the
OCM with the RGM potential VD.

The present paper is concerned with the derivationofeffective
potentials for the OOM The technique of ref. 5 is used to study the
collision a-'%0, a problem between a-a scattering, where it proved
successful, and '®0-'%0 scattering,where it did not work very well.

In section 2 we present the basic results of the RGM the GM
and the OCM and show how effective potentials for Saito's equation can
be derived from GCM kernels. In section 3 we apply the OGM to a-!%0
scattering. The results are compared to ''exact' results of the RV and
the details of the derivation of effective potentials are critically
discussed. Finally, in section 4 we summarize the conclusions of the

present work.

2. MICROSCOPIC THEORIES FOR SCATTERING — GCM, RGM, OCM

2.1. The Generator Coordinate Method

In the GCM the many-body wave function is assumed to have the

form!’?
GC -> -
o= [ o, @3 s
The generator function @a(xl,... XA) isafunctionof single par-
. . <> >
ticle coordinates x,, sy of the nucleons, and a set of parameters, the

generator coordinates, represented by a. The weight function f(a}, which
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plays the role of a wave function in the GOM is determined from the

dynamic condition
6<1};GC]H1;E’]\[)GC> =0 (2)

for variations of \IJGC through changes in f(a). In eq. (2) HT is the many
-body Hamiltonian and E is the tota! energy of the system.
The variatlonal Principle expressed in eq. (2) leads to the

Griffin-Hill-Wheeler (GHW) equation for the weight function

“%'(a,cx') - E f(oc,oa')]f’(a') = J Kla,a')rla')da' = 0 (3)

where f(a,a') and ﬁ(ot,oc') are respectively the overlap and Hamiltonian

Kernels given by

Hewa') Lo <o |1] 3o > (1)
Fla,a') @ Hp oo

The GCM provides good approximations for the many-body problem
when the solution sought is nearly contained in the subspace spanned
by the generator functions (Eq. { 1)}). The success of the GCM depends
drastically, therefore, on the choice of the generator coordinates a.

We are concerned here with the application of the GCM to scat-
tering problems. In the collision of two nuclei with mass numbers A,
and 4, the generator coordinates are chosen to be the components of a
vector & separating the centers of two potential wells to which A, and
A nucleons, respectively, are assumed to be bound. The generator func-

tion is written in the form

> > _ 1) > > (2) ~ >
Qa(xl,...xAl+A2) = u?{d)& (@;,...74,) - (xAl+],...xA1+A2)} (5)

1 2 . - .
where ¢( ) and ¢&( ) are Slater determinants describing single particle
motions of Al and Az nucleons, respectively. (£ is an operator which
takes care of the antisymmetrization between nucleons ofdifferent frag-
ments. In most practical situations the wave functions 4)_(,1) and ¢_,2)

o Q
are bullt with harmonic oscillator orbitals with the same oscillator
lenght. In such cases the generator function factorizes as

> > (1 2
) G o)) 6%z 0 (6)

int int

>
b5 = Opy @y
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1
In eq. (6) ®.y Is the center of mass wave functlon and ¢i(m):(é'1)
and ¢ir21t(g:!) are functions of internal coordlnates 5§ and 5 , de-
scrlbing the motlon of the nucleons in each fragment with respect to

its center of mass. The function I’Gci,&) is a gausslan packet

P@#,3) = (8/M /2 exp=(@-a)2/287] )
with the width 8 expressed in terms of the osclllator length b as

B2 = b2(4, + 4,)/(4, . 4,) (8)

For practical purposes it is convenient to work with the rela-
tive Hamiltonian Hr’ obtained by extracting the internal energies of
the fragments from the many-body Hamiltonian HT. The scattering energy
E replaces then the total energy E and the GCM kernel IZ(&),&)‘) takes the

form
Kla,a') = <‘I>&IHP —e|ey, > =
= @) o) 1@ e e e) 6™ @3 ()

As it frequently happens in low-energy nuclear physics it is
convenient to make partial wave expansions and solve the resulting

equations for each R value. With the expansions

@ =1lrr @y, 0 (10a)
REI= g T Rlest) 7,00 1, @) (105)

the scattering problem is reduced to solving a set of angular momen-

tum projected GHW equations
J]ZJL(G’O“) f‘g'(a')da' =0 (11)

The first step in applying the GCM to nuclear scattering is
the calculation of the kernels ]Zgl(a,oc'). This calculation can be done
more easily if the generator functions of eq. (9) are put in the form
of a slngle (4;+4;)-dimensional Slater determinant. With this procedure

}?z(ot,ot') can be expressed in terms of matrix-elements of one-body and
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two-body operators in a basis of Slater determinants which can be
handl ed® by comonl y used shel | model techniques. The GHWequat i on shoul d
then be solved with scattering boundary condition. This is usually done
on the basis of the cornection(egs. (21) and (22) of sec. 2.2) between
the @M and the RGM

2. The Resonating Goup Method
The Resonating Group Method was introduced by Wheeler® as a

molecular description of clustering phenonena in nuclei. If the nucleus
has the tendency to group in two clusters having mass nunbers A, and A
the many-body wave function is approximated as

RO = o, Gy Ale@® ol () o)

oM Fem int (627 (12a)

fn the above expression g(r) describes the relative moti ono{ §W° clug
ters of masses A, and A, separated by the distance I, and ¢ ¢
Oen and 4 have the sane meaning as in the previous section.

The relative wave function is then determined by a variational
principle as that of eq. (3), for variations of R through changes in
g(?). It is cunvenient to rewite the "Ansatz" of eg. (12a) in the form

(2

int ? |nt’

Xe,).0 @)

({JRG =0 (z.) Jdax g(x ‘4{¢mt £) ¢
(12b)

CM"CM

Wsing eq. (12b) in the variational condition of eg. (3 one obtains the
integral formof the RGV equation

—

[[#G3) - csG 3] 9GNa% = [ xGE9GNE = 0
(13)

vwhere 4(z,z') and H(z,z') are, respectively, the overlap and the Hamil=

tonian RVl kernels,

( 4(z,z") (1) ()

H(},;‘) int lnt

{ }Vq'q)mt H:')C S(@'-7) > (14)

= ¢ 6(,’1} I‘

In order to get the usual integro-differential formof the RGV
equation the identity | is extracted from the antisymetri zer

A=1-0 (15)
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When the nucleon-nucleon interaction Vij in the many-body Hamiltonian

depends locally on nucleon separations the identity ineq. (15) gives
> >

rise to a local part in K(x,x') and the RGM equations takes the integro

-differential form

#2 - > > > ->
EI;T V;, + VD(:U) -:[g(x) + J S(x,z')g(x") &z = 0 (16)
where 1 is the reduced mass and
D@ - 0 6 5@ o) sz
VD(x)é(ucx ) = lnt ¢int 8 (z-r) 7/_21 vy int in §(z'-r) >

g2 (17a)

5@ = - <)o) 5@ e 0l0l) o) 6@ ) >
(17b)

Equation (16) is a Schr3dinger equation with a folding model
type local potential VD plus a short-range* non-local potential S(;,;'),
resulting from the exchange operator ©.

With partial waves expansion of S(g,g') and g(.;), analogous to
egs. {10a) and (10b), the angular momentum projected equation

E% {f% - ——-—Q(QZI)J + VD(x) - {[ gg(x) + J sg(x,x')gg(x') de' =0
¢ x
(18)

is obtained.

In applications of the RGM to nuclear scattering the main dif-
ficulty resides in the calculation of the non-local kernel S(x,xz').This
kernel, which is much more complicated than those of the GCM, isusually

obtained by the unfolding of eq. (22).
it will prove convenient to introduce the eigenfunctions ofthe

RGM overlap kernel, defined by the condition

J A,z )P, @Nd% = u, P @) (19)
The operator A and its eigenfunctions will play a relevant role in sec~
tion 2.3. A special class of such eigenfunctions are the redundant
states Vz, which have eigenvalues equal to zero. These eigenfunctionsl’

are trivial solutions of the RGM equation. They violate Pauli Principle

*For identical fragments10 an additional long range potential pro-

portional to S({x+x')is contained in S{x,x').

333



and lead to identically vanishing RGM many-body wave function (eq.12b).
The redundant states give rise to ambiguities in the wave function g(;)
since new solutions can be obtained by the addition of arbitrary combi~
nations of redundant states. To overcome this difficulty one defines a

redundancy free RGM wave function* g

(20)

7> = A ; A1 - % hplo<y
lg> = A ]g> ; <y

with the help of the projector A that ellminates the cornponents of g

in the subspace spanned by the redundant states.

2.2.1 = The equivalence between RGM and GCM

As long as the GCM generator function factorizes in the form
of eq. (6) the RGM and the GCM are equivalent methods. Using the fac-

torized ¢, in eq. (1) and comparing to eq. (12b) one gets the relation
a

0@ = j PG r@) a% 1)

Following the same procedure it is straightforward to show that GCM

kernels and RGM kernels are connected by the double folding relation
£@,5n = J TG k@3 TG 3% 4% (22)

with analogous expressions for ﬁ(&,g‘) and I_(&L,OT'). Expressions (21) and
(22) can be used for each partial wave with the replacement of F(;,a)
by T, (x,a) Y% and d¥x by de.

In actual applications of the RGM or the GCM it is of utmost
importance that the relations (21) and (22) hold. For this reason Har-
monic Oscillator orbitals with the same oscillator lenght are commonly

used in the description of the internal motion of the fragments.

2.3. Approximate treatment of the Pauli Principle - The OCM

The GCM and the RGM are microscopic theories in which anti-
symmetrization effects are fully accounted for. These methods have been
applied to collisions involving few nucleons and to collisions between
heavier doubly closed shell nuclei with A<40. For other cases, however, the

calculation of kernels is prohibitively complicated and the application

of such theories is difficult. This situation led to simplified
x

For compactness, vector notation will be used.
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microscopic theories, like the OCM, in which the Pauli Principle is
treated approximately and non-localities are more easily handled.
The OCM is an approximate version of the Resonating Group

Method based on the assumption that the RGM kernels satisfy the con-

ditlons
A=A (23a)
H= A(T+VD)A (23b)
In egs. (23), written compactly in terms of operators, T = - K? Vi/ 2n
X

is the ;-space kinetic energy operator.

It can be easily shown that eq. (23a) is exactly satisfiedwhen
all non-zero eigenvalues of A are equal to one. In collisions between
very light nuclei, as a-particles, one is very close to this idealized
situation and the approximation in eq. (23a) is fully justified.

It. could be argued that the sirnplest approximation for H would
be H = T+V

D’
hamiltonian kernel. This would not, however, be good enough. Antisym-

completely neglecting antysymmetrization effects in the

rnetrizatiori effects should be considered at least to the extent that the
hamiltonian kernel keeps the property of annihilating redundant states.
The simplest Hermitian approximation according to this criteria is that
of eq. (23b).

Using expressions (23a) and (23b) in the RGM equation one gets

A(T+VD) Au =¢ A | (24a)
or

Mrevy) la> = e o> (2bb)
with

lu>= A |u> = |g> (25)

Eq. (24b) is the Saito OCM equation.

It happens frequently, however, that conditions (23a) and (23b
are not met. In such cases it is necessary to go beyond theconventional
OCM and lock for a better approximation to the RGM non-locality. For
this purpose one starts by defining effective potentials Veff by the
condition

a2 (r 4 v, yat/2= g (26)

£
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in eq. (26) Al/2 is the square root of the RaM overlap operator, given

by
2 iz e Ay <pl (27)

where EY,L> and Y have been defined in eq. (19). The RM equation can

then be written®
AP + Veff){x> = |y (28)

where |x> are the renormalized RaM states

e =AM g (29)

The problem of finding approximations to the RGM is then re-
duced to finding simple potentials for which eq. (26) is nearly satis-
fied. It can be easily shown that the potential VD has such a feature
when the conditions for applying the OCM (eq. 23a,b) hold. On the other
hand, when this is not the case, a simple approximation for Veff can
still be sought. This problem was studied in ref.5. Since Gaussiansare
convenient for calculational purposes the potential wag parametrized

as a sum of M Gaussians,
M 2,2
Vogs () = m—z_-] v, exp|-r /amj (30)

To avoid dealing with highly complicated RGM kernels, eq. (26) was re-

placed by an equivalent relation® involving GCM kernels

1/2

ratir ey At < B (31)

eff
The parameters of the potential (eq. 30) should then be chosen by fit-

A
elements of eq. (31). For the sake of keeping the calculation simple the

ting a selected set of GCM kernels ﬁ(a-,ocs.) with the corresponding matrix

parameters {am,Vm} were adjusted as to reproduce the GCM energy surface
—->
E(ai)

@, a.)
E(E) = ~—_)7/:‘_>i" (32)
¢ I(a.,0.)
(AR
with the matrix-elements
/ / > ~ >
<T@, 04 2+ v A T8 > /1GE,,6,) (33)
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at N equally spaced values of the generator coordinate 37:’ taken along
the z-axis. The division by f('&i,&i) is to emphasize the fact that the
GCM hamiltonian kernels should be calculated with normalized generator
functions @(&7:).

A trivial improvement of the method outlined above is the in-

troduction of parity dependence. In this case the potential is written

Ve =V Py -p) (34)
where P is the projector on the space of positive parity states, and
eq. (31) becomes

A C R CO LV E R I V(Sil) a7z 1 (2) (35)
with

AN G = a@E 4G, (36a)

%,0) + I'(x,-a (36b)

Q&3 = 8@,3 4@, -ah) (36¢)
3 APPLICATION OF OCM TO a — 0 SCATTERING

3.1. Effective potentials

In this section we apply the OCM to a-""0O scattering using

both the potential VD and the effective potential of egs. (30) and (31).

In our calculations the many-body nuclear potential was ex-

pressed in terms of Vo! kov V2 'l nucleon-nucleon interactions with the
forrn 2 2 2 2
=y /al =S ./a2

V(rij) =(1-Mp)(, e W v, e 7% (37a)

where PM is the Majorana exchange operator and the parameters M, a;,aq,

vy, V2 have the values
a1 = 1.8 fm Y1 = -60.65 MeV (37b)

a; = 1.01 fm v, = 61.14 MeV M = 0.621
Intrinsec wave functions were described by harmonic oscillators orbitals
with the length p = 1.62 fm (%w = 15.81 MeV). In this case the eigen-
states of 4 (eq. (19)) are harmonic oscillator states with width
B = 0.91 fin (eq. (8)) having the eigenvalues'? represented in fig. 1.

The eight lowest states with N = 0,1,...,7 are redundant.
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Fig.l - Eigenvalues Wy for the a-'%0 system. N = Nx+Ny+Nz = 2n+l is the
total number of phonons in the oscillator w.f. Full circles and open

circles correspond to even and odd 'parity states, respectively.

The local part of the RM potential for o- % scattering is a
sum of two terms. A nuclear term ( r which is given analytically

in ref. 13 and pictured in fig. 3., and the Coulomb term"®

(e) _ 16e? r 16)*/% 8e? _ 16 {r)?
VD (r) = - erf[ -2—7-"5'] - [-2—7-} ﬁ exp[: —27 [E]J (38)

erf (x) being the usual error function.
The effective potential is also written as a sum of two terms,

) (e)
Vege(r) = Vo pp(e) + V i () (39)
The Coulomb term Vé?%(r) is approximated by Vlgc)(r) (eq. (38))  while
() is derived from the GCM energy surface — excluding the Coulomb

e ff
part — by the technique outlined in the previous section. V‘Eff is ex-

panded as a sum of four Gaussians (eq. (30)) and the parameters{V,,...,
V. a, ...a) are determined by comparing the quantities (32) and (33)
at 20 equidistant points a = 0.5, 1.0, ...,10.0 fm and minimizing the
rms deviation. By this procedure we obtain the parameters listed in
table 1, with an rms deviation A = 0.05 MeV.

Fig. 2 illustrates the dependence of the fit on the number of
Gaussians used. The exact energy surface is compared to values fitted
with one (A = 0.4 MeV), two (A = 0.2 MeV) &nd four Gaussians. The com-
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Fig.2 - The a-'®0 energy
surface (without Coulomb
contribution). The solid
line is the microscopi-
cally calculated expression
(32) and the others are
obtained by inserting lo-
cal potentials into the
expression (33). The dot-
ted line is obtained with
V_ and the dashed and dot
-Qashed lines areobtained
with effective potentials
fitted with one and two
gaussians, respectively.
The fitwith four gaussians
is indistinguishable from
the exact kernel.

Fig.3 - Potentials for the
OCM. The solid line is
Vegfs the dashed and dot-
~-dashed lines are the par-
ity projected effective
potentials Viee and Veff,
respectively, and the dot-
ted line is the local part

VD of the RGM.
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parlson shows that values obtained with one or two Gaussians areclearly
poorer.

The procedure described above is also followed to calculate
effective potentials V(i)

eff "
derived from parity projested energy surfaces E(—) obtained from egq.

for even and odd waves. These potentials were

(36c}, with an analogous definition for T@,q). Using four Gaussians in
+
expansion (30) we fit E('> with rms dcviations of the same order as

that for unprojected potentials.

. . + - . .
The effective potentials Veff’ VeFF and Veff obtained in the
present work are shown in fig. 3. For cornparison the potential v is

aiso shown. The first point to be noticed is that the parity projection

has a very weak effect. The potentials for odd and even waves, Veff

(+ .
and Vefz” are very close to T/eff’

where these potentials differ slightly. The direct RGM potentials VD,on

except at small separations r 1 fm

the other hand, is not so close to Veff' Although both potentials have

the same tail there is some discrepancy between 2.5 and 5 fm and con-

siderable differences at r < 2.5 fm.

Table 1 - Parameters of the four
gaussians effective potential.

m 1 2 3 4
Vm (MeV) 281 -408 222 -202
a, (fm) 1.5 2.0 2.5 3.0

3.2. Phase-shifts

The a-'%0 phase-shifts obtained by solving the 0CM equation

with the potential Vp and Ve are shown in figs. 4 and 5, together with

ff
"exact'" RAM values!*., The calculations were performed at C.M. energies
up to 30 MeV for the relevant partial waves & = 0,1,...,10,11.The phases
are drawn so that they converge to zero in the high energy limit. Their

threshold value ist?®
6£(8=0) = (nl+m2) T (40)

where my is the number of bound states in the partial wave R and ny is

the number of redundant states given by ny = 4-2/2 for even waves and
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Sylrad)

Fig.5 - Phase-shifts for odd-%.
The notations are the same as
in fig.h.

Fig.4 - Phase-shifts for even-

-%. The sol id lines are the
results of a full RGM caleu-
| ation; the dashed and dotted
lines are obtained by solving
the ocMm with the potentials

Veff and VD , respectively.

341



n, = 4-(R-1)/2 for odd waves.

The agreement between ‘'exact!' phase-shifts and phase-shifts
obtained by the OCM with Veff is variable. It is good for =4, verygood
for 2=6 and 8 and fair for 2=0,2 and 10. For odd waves, where the OCM
calculation seems to be more accurate, the agreement is good for £=1 and
3 and very good for the remaining waves.

On the other hand, the phase-shifts obtained by the OCM with
the potential VD are consistently satisfactory for ail waves (slightly
better for odd waves). The overall agreement is, however, definitely
poorer than in the previous case.

The phase-shifts obtained in both OCM calculations (with v
and with Vn) as well as the ''exact'' phase-shifts show bands of resgﬁf
ances; two bands for even waves and one band for odd waves. The reson-
ance energies obtained from each calculation are listed in table 2, for
even-R bands, and table 3, for the odd-R band. With the exception of a
few resonances the energies predicted by both versions of the OM are
consistent with those of the RGM One can notice also that the predic=

tions with the potential Veff are slightly better.

} ~ . 1 2
Table 2 - Even-waves resonance energies. Eexact(Eexact)’ B _(E2..) and

E‘l/ (ET2/) are energies (MeV) for the first (second) band, obtained with
D
the RM and the OCM with Veff and VD, respectively.

I3 0 2 4 6 8 10
véxaCt bound bound bound 2.9 8.1 -
El " g " 1.2 7.2 -
v

eff

1
E " " L 3.0 10.4 -
v

D

éxact 2.8 3.6 6.0 9.8 17.4 25.4
Ef, 3.2 4.0 6.4 9.9 18.0 27.8
eff
E’; 3.2 4.3 7.0 11.0 21.6 25.8




Table 3 - Odd-waves resonance energies. The notation is the same as in
table 2.

L 1 3 5 7 9 11
1
oxact bound 1.6 5.2 10.4 18.4 >30.0
E; " 1.2 4.5 10.2 18.8 >30.0
eff
E; L 0.2 4.1 9.9 18.4 >30.0
D

3.3. Ambiguities in the effective potential

In this subsection we study the dependence of effective poten-

tials and corresponding OCM phase-shifts on details of the parametrization

(a) »(8)

of eq. (30). For this purpose we compare the potentials Veff and off

and the phase-shifts 6(a) and § , derived from two sets of parameters
{Vl(az...Vl‘a); al(a).... a5a)} and {Vl(b)---,V‘Eb); a.(b),---asb)}'mth both
sets the GCM energy surface is fitted with very small rms deviation
(A~0.05 MeV). The potentials V(a) and V(b) are shown in fig. 6, which

eff (b)eff

. (a i -
also includes VD. Although Vef?’ and Veff have the same tail these poten

tials diffar considerably a r < 2fm. In figs. 7 and 8 the phase-shifts
N

L
phase-shifts are also shown. Again, the sets of parameters a and b lead

(a)

to significantly different results. In both cases the phase-shifts 62

and Géb) are pictured for 2=5 and %=6, respectively. "Exact' RGM

and (Sgb differ by -20 degrees. For the sharp resonance the situation
is still worse. While the resonance energies predicted with Ve?:‘ are
not far from the ‘''exact'' values, the results obtained with thepotential
Vé?l are much poorer. The resonance at Rz=5 is missed by -2 MeV and that
at R=6 appears as a bound state.

The existence of the above ambiguities is an unpleasant feature
of the technique used to derive the effective potential. The source of
this difficulty could be in the unfolding of the convoluted matrix-el-
ements of eq.(33), to derive the effective potential. The deconvolution
of such expressions is a difficult operation which may become worse if

the potential is expressed in terms of a large number of porameters and
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-150

-100

Fig.6 - Ambiguities in t(h()e effec-
a

| . | tive potentials. Vp, Vcc and
* b
4 6 V{E ) are defined in the text.

rifm) ff

8 L) T T 1 L T v L] L) T T v 14 T
=5

3w -
21 1

Ecu{Mev)

Fig. 7 - The a-!®0 phase-shifts for R = 5. The
solld llne is the result of a full RGM calcu-
lation; the dashed and dot-dashed lines are tsle
results of the OCM equation with V‘&?% and VQ;ZP
respectively.



2t

o
Ecn (MeV)

Fig.8 - The a-'%0 phase-shifts for R 6. Theno-
tation are the same as in fig. 7. Notice that
the sharp resona cT predicted by the RGMcalcu-
lation for the Ve?f case appears as a bound
state.

these pararieters are chosen to fit the convoluted matrix elements with
great accuracy. In some cases the unfolding can be improved by simply
reducing the number of parameters and allowing for some inaccuracy in
in the fit. Having this in mind we performed calculations with Veff
parametrized in terms of three and.two gaussians with the result that the
use of three gaussians led to ambiguities of the same kind andtoslightly
poorer phase shifts and with two gaussians the phase shits were too poor
and some ambiguity still remained. The ambiguities in Veff cannot, there-
fore, be associated with the use of too many parameters in our calcu-
lation.

A different approach to handle this problem could be followed
by introducing a few changes in the prescription5 for deriving the ef-
fective potential. The major limitations of such a prescription, namely,
restricting the fit to diagonal elements of the GM kernels at a set of
equally spaced generator coordinate values, can be partly dropped. The
inclusion of extra pointsin the vicinity of the minimum of the energy
surface, which plays an important role for sharp resonances, isstraight-
forward. Off-diagonal GCM kernels ];(&i’&?,’) with &7; and &J. along the same

direction can also be included without appreciable cornplication. W be-
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lieve that this approach can lead to inprovements in the effective po-
tential and in the phase shifts. Presently a study along these lines is

In progress.

4. CONCLUSION

The collision a-*%0 is studied with mcroscopic theories. The
OCM using both the local part of the RGM potential and an effectivepo-
tential derived fromdiagonal elements of QM kernel s, is used to
derive nucl ear phase-chifts in the partial waves R=0,1,...,11,at CM
energies up to 30 Mev. The calculations are perforned with the commonly
used Vol kov V2 interaction and the results are conpared to '"exact'" RGV
results. The QM phase-shifts obtai ned with Vogg are in good agreenent
with those of the RGM specially for the partial waves R=05, 6,7, 8,9.
The overal | agreerment is better for odd partial waves. The OOM phase-
-shifts when calculated with v,are al so consistent with those of the
RAV al though they are poorer than in the former case. The inprovenent
resulting fromthe use of Veff is appreciable. It is however less im
pressive than that for cal cul ations® with the Brink-Boeker!® BI interac-
tion, for which the GMwith VDfaiIs entirely.

V¢ study the sensitivity of the results to details of the
paranetri zation of Vopge Ve find that this potential is anbiguous. we
show that two equal 1y good paranetrizations(by the criteria of fit-
ting our mesh of @M kernels to the sane r.m.s. deviation) can lead to
rather different potentials and nuclear phase-shits. A detailed study
of the origin of such anbiguities is presently in progress.

V¢ are grateful to Dr. H Friedrich for providing us with the
OM and the V,gg codes and for several helpful comments during the de-
velopment of this work. \ are al so indebted to Or. R Donangelo for

critically readi ng the manuscript.
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Resumo

0 uso de teorias miscroscépicas aproximadas na colisdo a-'%0 &
investigado. 0 modelo da condicdo de ortogonalidade {0CM) com o poten-
cial direto do Método do Grupo Ressonante (RGM) e também com um poten-
cial efetivo, Vegfgs, derivado a partir de '"Kernels'' do Método de Coorde-
nada Geradora (GCM) é empregado para estudar colisdes en energias (C.M.)
até 30 MeV, para todas as ondas parciais relevantes. Embora as previ-
sdes do OCM sejam consistentes com resultados '"exatos'™ do RGM em ambos
os casos, as defasagens obtidas com o potencial efetivo sdo melhores.
Séo constatade}s ambiguidades na determinacédo de Veff' A natureza destas
ambiguidades € discutida.
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