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Abstract W solve the thermal Hartree-Fock equationsforthe anisotropic
Heisenberg model in 12 in the neighborhood of the exactly soluble XY
model. This paper displays the specific heat.

1. INTRODUCTION

The anisotropic Heisenberg Hamiltonian is characterized by
three coupling constants Jac’ J , and J The thermodynamics of the
8=1/2 XY model (Heisenberg model with J =0) is exactly calculable inone
dimension (1D) by a "trick': transformatlon of spin operators S into
fermion creation and destruction operators e;’; and e, ! The amsotropic
Heisenberg model (J #0) cannot be so easily reduced to quadrature; the
ground state for the cases J -J is obtainable by Bethe's ansatz® but
the thermodynamics is given by formldable coupled nonlinear equatlons
the validity of which has not been fully established. Our basic knowl-
edge of the thermodynamics of s=1/2 magnetic systems in 1D, comes, there-
fore, from numerical extrapolations on finite chains*, and not from
fundamental theory.

In this paper, we seize upon a remark by several researchers®
that the elementary excitations of magnetic systems in 10 are fermionic
i.e. "spin waves' carry spin one-half. This Zs precisely the situation
for the XY model, and suggests that the general anisotropic Heisenberg
model may be modeled on the XY model. For the ground state,this modeling
yields excellent results® if “exchange'' and "correlation™ terms are re-

tained in the treatment of the perturbation,

H' = ~-J (1)

2 z Sn n+l

For lJ | <<1g, | or |Jdy| the exchange terms are sufficient, because the
correlatlon energy contributes only O(J ) &. The "exchange"™ contri-

butions are given exactly by Hartree-Fock theory, and so we have the
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motivation for the present work: W derive, and solve, therather simple

Hartree-Fock equations for the Hamiltonian H=H0+H', where H, is

B, =~ ng‘ [S:Sfm + SZS%J = (-1/2) nzzv] S8 1+ H.C] (2)
choosing Jm=JY=1 as the unit. We display the specific-heat curves ob-
tained by this method in the accompanying figures. Inaconcluding para-
graph, we indicate possible extensions of these calculations to include
the aforementioned correlation terms, as well as externally applied

fields and XY anisotropy (Jx # ;y).

2. HARTREE-I'OCK EQUATIONS

After the transformation to fermions, H, takes the form

N
= (- ok
H = (-1/2) . leXe o+ H.C.] (3)
while H' assumes the form
N
r = _ —_ —_
B = Jz nzl (C;’Z °n 1/2) (c;;+lcn+l 1/2) (4)

Together, they represent a one-component fermi gas (''Majorana fermions')
with weak nearest-neighbor interactions. Exact theories? have estab-
lished that in the range ]JZ| £ 1 the picture of free fermions remains
essentially exact. (It is only for ‘Jyl > 1 that fundamental changes oc-
cur: for Jz > 1 there develops an energy gap and the ground state s
the particle vacuum. The ground state for Jz < -1 is also characterized
by a gap, but vacuum fluctuations introduce additional complications
into this Ising-antiferromagnetic 1imit.)

The Hartree-Fock treatment of H' thus models it on 4 , ar-

. . . . 0
proximating it by a simpler operator

N
= * *
Hye = 7, nzl Ecn Cnel Cpn%” F H.C.]

N

- Jz Z |<c;cn+l
n=1

>|? (5)

In selecting the terms to be retained one determines the outcome of the

calculation. Thus, we have not considered contractions such as
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<e, €, 1> "(6a)

and have assumed
- > =
< * ]/2 0 (6b)

At the outcome of the calculation, one verifies that egs. (6a) and (6b)

vanish.
The novanishing brackets are thermal averages. Let us define
w(7) as,
* *
< > = < > =
%n Cnal “ur1 n H (7)

making the further assurnption that u is real, again verified at thecon-

clusion. The internal energy is

- _ _ 2
<},{0 + HF’1F>‘ = -N(p J ) (8)
with
u =[—]V- E <a;§ak> cos k
2m -BJ cosk -
= Q‘I‘rf J dk cos k F/(e eff +1) (9)
and
Jeff =1 - ZJZU (10)

The operators az create fermions in plane wave states, a destroy them.
At this point, one may verify that egs. (6a) and (6b) vanish.
To solve these equation, it is efficient to define anauxili-

ary variable

BY = BT o amn
in terms of which we obtain
' 2m -
-R%*
p(B*) = —2-‘-7;[ dak coskl;B C°57‘+1] (12)
/ L
B =p*0-27 (] (13)
and
/8 = q PI-ZJZu)z/(I - 27, (U-l.JB*)ll (14)

with 11 2 3u(B*)aB* .
The r.h.s. of eqs.(12)-(14) involve only the auxiliary variable. Simi-

larly, the specific heat (the thermal derivative of eq. (8)) is obtained
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Fig.l - Specific heat in units of k, eq. (15), for
various Jz’ as a function of kI' (in units of

J =J =1).
Yy

Fig.2 - Approximate scaling: c/cmax Vs T/Tmax

yields a universal curve only for T < Trrax'
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as a function of B* alone

eug = k8% (1-20 Wi/fl-27, (u-1ig*)] (15)

H=0

The procedure we adopted was to specify B*, then calculate B, ¥ and
1.1 so as to obtain the zero-field specific heat eq. (15). Fig. 1 gives
the results of such calculations, showing that even outside the range
of validity of the theory, at Jz =11 or 11.57, the results are well-
-behaved.

Figure 2 shows an approximate scaling. Plotting c/cmax
VS. T/Tmax (where the maximum specific heat Crax OCCUrs ata temperature
Tmax) one would obtain a universal curve at atll Jz i2f e(T) were linear
at low T and satisfied an Inverse power law, say T at T > Tmax' How-

wever, this scaling seems accurate only for the low-temperature range.

3. DISCUSSION

At B*_1=0, u=1/m. Thus, for [le > w/2 , we have trouble at
T=O0 with eq.(10). (The correct critical lJz[ is eq.1). If we retained
the correlation terms, theapproximatecritical IJzI becornes /4, a
decided improvement over the present results®. However, to retain the
correlation terms at finite temperature, one requires a temperature-
-dependent bosonization scheme (an interesting project for the future).
To study small Jz corrections to the anisotropic XY model ( Jx # Jy ),
one requires averages of type eq.(6a). In the presence of an external
field, or at values of [J?I exceeding the critical value, one similarly
requires nonzero averages for eq.(6b).But, for the stated conditions of
small |7 | and Jx:Jy=I in zero external field, the present solution
of the exact Hartree-Fock equations appears to be satisfactory.
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Resumo
Resolvemos as equacdes de Hartree-Fock para o modelo de

Heisenberg anisotrépico en 1D na vizinhanca do modelo XY exatamente so-
lavel. Neste trabalho apresentamos o calor especifico.
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