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Abstract e present an exact calculation of the Potts Lattice Gas inone
dimension. Close to T=0°K, the uniform susceptibility presents an es-
sential singularity, when the exchange parameter is positive, and a
power law behaviour with critical exponent y=l, when this parameter is
negative.

1. INTRODLICTION

The pure r-state Potts model has been extensively investigated
in recent yearsl. The annealed (site) dilute Potts model or Potts lat-
tice gas is also of interest in relation to adsorbed gases on sub-
strates?’3’*. In the latter, each of the N sites of a d-dimensional
lattice may be occupied (tz.=l) or not (ti=0), the vacancies being con-
trolled by a chemical potential A'. An occupied site may be in one of
the r states, o; = I,...I' and two neighbouring occupied sites inter=

act through the Potts hamiltonian, the coupling constant being J'. Thus

H=- J' (rS “Ne.t.- ) A (1-£.) ]
<7,'Zj> r%‘"’j %% g t W

The grand-canonical partition function ZN=ZN(J,A,P) is then

7 = Z' i expEf(rc‘S -l)t.t:lH epr(l-t.)} y (2)
V(e o} { <ig> 9p% Tty *

7 7
where J=BJ', A=BA' and B=1/kpT. kB is the Boltzmann constant and T, the
temperature. The prime on 2’ implies a summationonly overoccupied
sites. {07:}

This model is also relevant in the polymer gelation® and in
the site-bond percolation problemse. Furthermore, the dilute [sing

(r=2) and the pure Potts (A' = -»} |imits’ follows immediately.

*Work partially supported by FINEP, CNPq and CAPES.

313



2. EXACT CALCULATION OF Zp ( J, &,1 ) IN ONE DIMENSION

Ve rewrite eq. (1) for the open chain as:

A Ay r
=t T oo VLT g (o)
Ty L tw-1°%-1
x expt{(réoN_]’oN—l)tN_]t&] 3)
ZN-l(tN—]’ON-l) is the partition function for an open chain with ~N-1

sites, with fixed values of %, | and 0y _,.

But, clearly

By = 2y(ti o) ¥ ZN(ti=]) (4)

Zy(t;=1) = 7 2,(t,=1,0,=q) (5)

where q denotes an arbitrarily given state that the variable OIV can

assume. From eqgs. (3), () and (5) It follows that

- b - A -
ZIV(tIV=0) =e ZN-I (tN_I-O) + e ZIV—] (tN_]-l) (6)
Zy(tgay) = 2 Zy (B =00 + 2 2y (B 1=1) 7)
with
a =D (e (8)
Defining
(
Zy (tyg)
Z =
m
Zy(tyay) |

allows us to condense egs. (6) and (7) in

Iy =T Iy

and, by iteration

z <1 g,
The eigenvalues of the T-matrix are
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+

Az = %—_feA+Ao) * é] (9)

where
A &
a=!’(ko—e)2+hr e:] (10)
From these and from the elgenvectors we can easily find
Zy(t,) = ’—(r-eAA-) O (e (x')”":' (1)
2y (6, ) = eAa‘l((y»-eAA’)A"(x*)N"-(r-eAA“)A'(x')"’"J (12)

and thus from eq. (4)

R e L TOu 13)
with
Lot - A

3. THERMODYNAMICS OF THE DILUTE POTTS CHAIN

From eq.(13) many thermodynamic properties of the chain can be
obtained. For example, the free energy per site, in the thermodynarnic
limit, is

g(7,8) = kT an 27 (14)

The entropy per site is given by

k

+ B r_ - A o1
S(J,A) = ky o AT - — He=1)2  J{(x-e") +a}
200" 0
+ faf (eA—Ao) +2r + a}:[ (15)
where
ao= ) (16)
W define the correlation function by FQ(J,I’) = <(r60 o _1)ti t2+i>;
it is shown in the Appendix that: Tt
AA+ Ay 2
o (,8) = &2 (r-1) |2 a7
2t At

From this result and the fluctuation-dissipation theorem we
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can conmpute the zero field uniformsusceptibility

X = SL D) e i J (18)
3+ kBT b\+ - A

W now di scuss the physical picture energing from the above
results. Wen J'>0, two situations are possible according to the rela-
tive magnitude of A' and J'. Wien A'<J'(»-1), the ground state (7=0°K)
has energy Eo = -{(N-1)J%(r-1) and corresponds to a r-fold degenerate
ferromagnetic order without vacancies, the entropy per site being zero
in the thermodynamic limt. As the tenperature approaches 0%, the
uni form susceptibility eq. (18) exhibits an essential singularity

2 {(r-1) _Jr
Koz —v 0 °©

which is characteristic of the pure ferromagnetic Ising nodel . Qearly
this holds for the pure ferromagnetic Potts model as well.
The average nunber of vacancies per site is

eA(r+eA-l—)
EEEPeECE S (19)

Figure l-a illustrates the dependence of q, upon T A T,
qg = 1/(+r}as can be seen using eq.(19) or remenbering that each site
can be in (1+r) states (vacant or in r occupied states). Thus g, < 1/2
whenever r >1, for any temperature, and occupied sites are nore favor-
abl e than vacancies. A T=OOK, the energy is reduced by occupyi ngevery
lattice site; as T raises, vacancies are created.

In figure I-a we plot also

Py= <tbg> = 0_:)__ (20)
the probability of having a nei ghbouring pair of occupied sites and

= <ti(l-t. Y+ (1-2.)¢.

Z+1 2t T Z(I_qs_po) (21)

Py
the probability for a neighbouring pair vacancy-occupied site. It's
easily seen on physical grounds or using egs.(20)and (21) that, as
Toreo, p: = p2/(14p)? = (l-q:) and p; = 2r/(14r)? =2 q:(l-q:).

In the one-di nensional system the introduction of a vacancy in
the interior of a cluster of occupied sites splits the cluster and at
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the same time creates two vacancy-occupied site pairs. The total num-
ber of clusters (clusters of vacancies plus clusters of occupied sites)
increases by two. The quantity Py thus counts the number of clusters
per site and in some sense plays the role of a disorder parameter.

Once the probabilities g and p,,, are both less than 1/2  (see
fig.la), there is a tendency of the system to segregate or to form clus-
ters of occupied sites.

if A'>7' (r-1), at 7=0°k, E=-NA'" and every site is ernpty. Thus
SO and x=0. In fig.i-b we plot dg» Po and pw against T.

The qualitative behavlour of the entropy with temperature is
irrespective of the relative value of A" and J' (J'>0), and is shown
in fig.2 (lower curve). When T»w, S =k, &n (1+r), as expected in physi-
cal grouncls.

We consider now J'<0Q, Again two situations are possible. If
A'>|J'|, the results are the same as those for J'>0 and A' > J'(r-1).
More interesting is the behaviour of the system when A'<|J'| (this in-
cludes the pure Potts model with J'<0). As the temperature approaches

OOK, the uniform susceptibility eq. (18) has now a power law singular-

'ty (-1) (r-2)
T kBT
which defines the exponent y=1. At T= 0°X, the system becomes pure. In

order to understand the nature of this transition, let us applyasmall
uniform megnetic field, say, in "direction”™ g=1. The system then or-
ders in the following way: in alternate sites of the lattice (say ,
sublattice A) the atoms are in the same state gq=I and the sites on
the other sublattice (say, Az) are distributed among the remaining
(r-1) states (the degeneracy is (r—l)N/z)
Clearly, this kind of-order is only possible for r3. For »=2,

it is an usual antiferrornagnetic phase. Of course, we can also have
"true' antiferromagnetic phases in the Potts model, but we expect these
to show up in the corresponding wave vector dependent susceptibility.
At zero magnetic field the above configurations have the same
energy as those obtained by partitioning the lattice in up to sublat-
tices, where at least one is ordered. There are still many other de-
genate configurations with no ordered sublattice. Counting all them, we

end up with r(r-l)N_] possibilities. Thus, at T=0°K, in the ground
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state, whose energy is E = -(¥-1)|J'|, the entropy.per site is given
by 5,= kB R (»-1), as can also be seen by performing the appropriate
limit in eq.(15). Theentropy versus temperature is shown in fig. 2
(upper curve).

The discussion on the probabilities a4 > p, and Poy follows
analogously as in the case J'>0, A'<J'(r-1). (See fig.1-a).

The hamiltonian eq. (1) corresponds to a particular case of a

more general Potts lattice gas hamiltonian®

= ! - -
RH = - <izj> E«s%ﬂj + Kilv’;itj g AQ1-t)) (22)
with X=Jr and X'=-J. Nevertheless, eq. (22) can be treated by the same
methods developped before givingthe same results, except that now

A = 4 (pe1)er
and

- i i
PR S

L

The discussion of this section still applies' but now the com-
parison must be made between K'+XK and A (for K>0) and between X' and A
(for X< O0).

APPENDIX
We derive here the expression eq. (17) for the correlation
function
T (7,4) = <(r & -t t, >
i'A O'1 Ul-l-] 1 4+
Let [
s ) . (f Oi=°j=q » @=1,...7
Oioj’q 0 otherwise
Then
<§ t t >=pr<§ t.t >
0102_‘_] 17841 clc“] sq 172+1

+ However, hamiltonian eq. (22) has an additional symmetry not presented
in eq.(1); when 2K=2K'=A the former reduces, in d=1, to the {(r+1)-

-state Potts rnodel.
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Fig.1-Plots of the
average number of
vacancies per site
(qg), of the prob-
ability of a neigh

bouring pair of
occupied sites {py)
and of the prob-
ability of a neigh
bouring pair occu=

pied site-vacancy
(p,y) versus tem-
perature. For T -

q: = 1/(+r), pr: =
= 2r/(1+r)*and P,
= 2r/(1+r)? a) J'>0
and A'<J'(r-1) or
J'<0 and A'g|d’

b) J'" > 0 and
A'>7' (r-i)or J'<0

(1b)

S(J/°K)}

and Av>|gt].

Fig.2 - Entropy per sites ver-
sus temperature. Lower curve:
J'>0 or J'<0 and A > |J|; Upper

curve: J'<0 and A<|J'|; S, =

T(°K)V = kB n(r-1), s = kB n(r+l) .
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and so,

= 2 -
Po(d,8) = <5 titg > T <tite.,> (A1)
179+1
But
<t t, ,>=lim 2 (¢ =1, £, .=1) /2 (A2)
199+ o N 71 2+1 N
<8 tty > =1lim 2 (¢t =V, 0 =gq; t, =1, 0, .=qg)/Z (A3)
010£+\;q 17241 Jraon N7 1 241 77 T+l N

Divide a Nsi te chain in two others with #+1 and ¥-% sites,such
that the 241 site is in a fixed spin-state g. 1t follows that

ZFJ(tM]=]’ GM]=CZ) = ZIQ*I (tﬂ,q.]=l’ O,QA-]:CZ)' ZN-Q,(t1=]’Ol=Q) (AL')

Note that the 2+1 site of the original lattice is nowthe first one of
the (#-2)-site lattice. Also

Z t = = M = = = = - . = =,
w8 =1,0,=G 1 =1,001=@) =2, (8,=1,0 =q;% 1=1,0,,=4)

x Ly o (t;=1,0,=q) (A5)

Using egs. (5) and (A4) we have

1
Z.(t =1z -1, = -
7 Cgan (P17 By 7 B g (Ba) (A6

pEr=Tstg =)

The cal cul ati ons of £2+](t1=1;t2+]=1) and ZM] (t1=1,0,=9,

th]=l,0hl=Q) are carried out by a shaightforward general ization of

the procedures leading from eqs. (6) to (13)

- L - -
2y, (£,=1; £, =1) = ro ! EAA*'()\*) - M )2:[ (A7)

ZR+I(t1=]’°1=q;tQ+I=I’O£+I=Q) -
_ -2 - -
- (a) 1[(r-r)a<xo> + el ot - (Ao)“] (A8)

with 2% a,4% and A, defined in section 2.



Using eq. (12) to evaluate ZN-}L(tFI) in eq. (A6), we obtain

A+ : =%
e"AT A+ A-[A]:I
<t t, > = e d - ed |[— (A9)
172+1 u>\+|~ G

Note that this reduces to expression eq. (20), when R=l.

Expressions eqgs. (5) and (12) allow us to evaluate ZN_Q(‘JH:‘,
0,=q) in eq. (A5) and thus

<8

A AL -2

e~ (% A~ (A A +]
tt, > = —— (r—l)a—] -eA [—}+eA
0100, . 178+] b\+ _1

r'za)\+ At
(A10)
Finally, from egs. (A9), (A10) and (A1), eq.(17) follows.
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Resumo

Propbe-se um método que permite o calculo exato do modelo de
Potts diluido en uma dimensdo. Para parametro de troca positivo, a
susceptibilidade uniforme apresenta uma singularidade essencial, quan-

do a temperatura tende a 0°K; para parametro de troca negativo, &
obtido un comportamento em lei de poténcia, com expoente critico y=1.
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