Revista Brasileira de Fisica, Volume 13, n? 2, 1983
Effective-Field Treatment of an Anisotropic Ising Ferromagnet
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Abstract We discuss the anisotropic square lattice spin 1/2 Isingferro-
magnet. Through this system we illustrate how all relevantthermodynamical
gquantities (phase diagram, magnetization, short range order parameter,
specific heat and susceptibility) can be approximately caiculated within
an effective-field unified procedure (which susbtantially irnproves the

Mean Field Approximation). Two slightly different approximations for the
susceptibility (whose exact computation is still lacking) are presented.
The way the extremely anisotropic square lattice recovers the linear
chain is exhibited. The present (mathematically simple) procedures
could be useful in the study of complex Ising problems.

1. INTRODUCTION

The basic understanding of most magnetic phenomena is presently
quite deep. In what concerns theoretical approaches, a great amount of
techniques are presently available (series', Monte Carlo?, Renormal iza-

® among others; see also

tion Group®’"*, Coherent Potential Approximation
references therein); however in practice not all of them are tractable
for complex systems, and consequently effective-field theories can be
very useful to provide a first insight into these problems. Recently
Honrnura ang Kaneyoshi6 have introduced, for the Ising model, a new type
of effective-field treatment (based on the use of an appropriate
differential operator into the spin correlation function Callen identity”)
which, without introducing mathematical complexities, has been quite
succesfully applied for a large variety of situations (pure systernsa,

9510511 13514

bond-randoni magnets including spin-glass'? and amorphous

systems, binary alloys!'®, transverse Ising model!® and surface problems'’).

This approach is quite superior to the standard Mean Field Approximation

* Partially supported by CNPq.
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(MFA) in several senses; for example, contrarily to MFA it provides
a vanishing critical temperature for the nearest-neighbour linear chain,
and exhibits physically expected non uniform convergences (related to

219 Up to now rnost works within

various crossovers) in random magnets
this new framework have been exclusively dedicated to the calculation
of the phase diagrams and magnetization; the specific heat has been

6211 jp isotropic systems and the rnagnetic

analyzed in two occasions
susceptibility in none.
in the present work we study the anisotropic square lattice
spin 1/2 Ising ferromagnet. All relevant thermodynamical quantities
(namely the phase diagram, spontaneous magnetization, short range order
parameter, specific heat and isothermal magnetic susceptibility) are
calculated within an unified approximation framework; in particular for
the susceptibility (whose exact cornputation is still to be done) we
introduce two slightly different approximations. The fact that we are
dealing with an anisotropic system will enable us to exhibit how the

d=2 to d=1 crossover (d = dirnensional ity) occurs.

2. MODEL AND FORMAL.ISM
2.1. Spontaneous rnagnetization

Let us consider the Hamiltonian

H=- ) J.. 0.0, (6., 0. = 1) (1)

<L, J>

where <Z,J> run over all the couples of nearest-neighbouring sites on a
square lattice, and J equals either J, and o, (0sJ,5J,> 0), respectively
corresponding to the x and y axes. The starting point for thestatistics

of this system is the following Callen identity’

<g.> = <tanh B 5 Ti5 957 (8 = 1/k,7) (2)
where J runs over the 4 neighbours of site i, and <...> denotes the

canonical thermal average. By introducing ® the differential operator
D E 3/3xz, Eq. (2) may be rewritten as follows:

B‘DZ,J. .0 .
<g.> = <e J >tanh x (3)
Z
x=0
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By introducing the definition
D igloy+a,) + anlo,+o,)]/ ¢t
Glt,6m) = <e > tanhx' (4)
=0
wheret = Z:B T/, q= Joldy E [6,7] and o, and o; {0, and 0,) are the
Meft” and “right" {'up'' and 'down') nearest neighbcurs of site i, the

spontaneous reduced magnetization will be given by

m = <0,> =g (¢,€,n)

g =n = H
’_\l_[j(cosh —l? + m sinh 2) 2 (cos 8D 4 o sinh 22 2| tanh x ‘ (5)
T T t t —n
I =0
We have neglected correlations between next-nearest neighbours. By
evaluating Eq. (5) we obtain (see also Ref. (9))
m = Am + Bn (6)
: Ertanhz—(-]-i“)—'l' tanh 2+ tanh;u'1 /2 (64)
L t ¢t |
B = [:tanh 20+0) tanh 2. tanh 20 ] /2 (6')
t t t |

which admits the paramagnetic solution m=0 and the ferromagnetic one

(see fig.1) I-A 1/2
9 m= 5 7)

The critical line is given by 4=1, which provides a critical reduced

ternperature t_ monotonously increasing from 0 (d=1) to 3.0898 (4 =2)

while & runs from 0 to 1 (tcexaCt(oc=l)=2.2692; tCMFA(OL=l)=l§).

2.2. Short range order parameter and specific heat
The internal energy per site <E> is given by
B> = -J T - JzTy (8)
T, = <0,0,> = <0.0.> (9)
T, = <0,0,> = <0,0,> {9")



0

0 : ! T/ T (&=1)
Fig.l - Thermal behaviours of the spontaneous rnagnetization (solid line)
and the square root of the short range order pararneters along the a-
(dashed line) and y- (dot-dashed line) directions for selected values

of a=d,/J,.

(Tm and TY are referred hereafter as short range order parameters). By

using the two-site Callen identity we can rewrite Egs. {9) and (9') as

follows:
BDZ_Ji.c.
T =< e 3 “9Istanh (10)
x’y T:n
or even
1
Tx = —"t—i G(tygsn)l
2 D 3¢ E=n=1
=%—Jtanh—2—%ﬂ+tanhz%-—o‘l+2 tanh%L
{ J
2 -
+1]r{ 3 tanh 2(1+0) anh (IEOL) i
8
+%—jtanhM+ tanh 200-0) -2tanh3]»m“ ()
l ¢ t e f
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and

T, = %—t— G(t,E,n)
oD 3 E=n-=1
{ 2(l+<x) - tanh M + 2 tanh Zo
{ ¢ ¢ X ¢
+ 3 tanh Z(Ha) + ta —-—-2(]-(1) m?
t
+ tanh—z(]—m-— anhz—(l—-—q—)--ZtanhL—o’; m* (1)
8 t t t

The temperature dependences of /17 and /'g are depicted in Fig.1. The
specific heat per site is given by

9T 9T
c=3B g | —Esat (12)
5T | at ot

The therrnal behaviour of the specific heat is shown inFig.2 for selected
values of a: we remark that, although the well known logarithmic diver-
gence is not reproduced (this is of course typical for effective-field
theories), a paramagnetic tail (proportional to I/’.7’2 in the limit of
high temperatures) is present, thus improving the standard MFA result.

@=0.01
ci
kg
6\
az0.1
4t as0.5 .,
2t
A Fig. 2 - Thermal behaviour of the reduced
0 L e,
o Q.5 t Tty specific heat for selected values of a.
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2.3. Suscenptibility

In the presence of an external magnetic field &, theterm -g%ﬁ[

must be added to Hamiltonian (1) (g = Landé factor and UB = Bohr mag-
neton); consequently identity (2) is extended into
<o > =<ta‘nh B(§Jij0j + guBH)>
BDZ,Ji .0 .
=<e dJ ¥ ‘7>tanh(ac+8guBH)
z =0 (13)

The zero field isotherrnal rnagnetic susceptibility per site is given by

2,2
gru
B .
Xo =5 X (1)
3
X =5 (15)
=0
where h = guBH/J1
The identity (13) can be rewritten as follows:
D[(°1+Oa) + o¢(02+oq)]/t i
m = <e > tanh (x+;) (16)

x=0

By neglecting next-nearest-neighbour spin correlations, Eg. (16) becomes
identical to Eq. (5) except for the transformation tanh z~ tanh(x+k/¢);
differentiation with respect to h on both sides leads to our present

first approximation for the susceptibility:

I F
s — (17
t(1-4-3Bm”)
where | stands for '"first! approximation, A, B and Mare given by Egs.
(6'), (6") and (7) respectively, and

F= %—{rsechz 2039) sech? 207%) 9 gecn2 2
L t t , t
+ 2 sech? 20 + 2]
t
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+ l:6 sech” _____2(]+0L) - 2 sech? 20-a) | 1{[ m?

t t
+ l'sech2 M + sech? 2(]—_00 - 2 sech? E
t t t
-Zsechzﬁ +2—lm“1 (18)
. J

The temperature dependence of XI is depicted in Fig. 3; remark that, in
the limit £ >, X&' - 1/¢.
Let us now turn onto another type of approximation which will

provide our second proposal for the reduced susceptibility, noted XIL

Fig. 3 - Thermal behaviour of the inverse reduced zero field suscepti-
bility within approximations | (solid line) and 11 (dashed line) ( see
the text); the dot-dashed line qualitatively indicates the possible
exact result (where we have taken into account the fact that the exact

susceptibility critical exponent Y is known to be larger than one).
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Both single-site (£q(2) and two-site Gl len identities’ can
be general ized!® into

! _ I3
<f'o,> =<f'tanh B(§.J1Zj0j + guBH)> (19)
where f' is an arbitrary function of ali o # oy (f'=1 and f’=ok re-
spectively provide the single-and two-site identities). B/ choosi ng

fr= f[ +(tanh BC‘:]iq.OS.;) (tanh ngBH)] where f also is an arbitrary
function of al akjf- a:b we rewite Eq. (19) as foll ows:

<fo > + <fo,t anh (E]ZJij(ti?.» tanh(BguBH)

= <ftanh(BLJ ..G.)> + <f> tanh@guH) (20)
J 13 J B

By finally choosing f =1 and introducing'® the differential operator
Dinto this identity, we obtain:

8755%" > tanh xl
>+ ,
<o, +<o e . Otanh(BguBH)

g =

BJ ;0D A
=<ie “9 5 tanh 2 + tanh(BguBH) (21)
J

x =0

BJ..0.D
By decoupl ing the nearest-nei ghbour spin term i.e. <o, Me RCA A

BJ ;. 0D J
= <o ><Ile 73 >, and by further decoupl ing the next-nearest

; B7..0.D, . o 2505 eq.(21)
-neighbour spin correlations, i.e. <fie wd I <e r ea-d

can be rewitten as fol |l ows:

II o . + i .
m+ m j[cosh(B 7’JD) m smh(BthD):[ tanhx‘x=0 tanh (BguBH)

= l'[ E:osh(BJiJ-D) +m sinh(BJiJ.D) tanh

' + tanh{ BguBH)
J x=0

(22)

B/ differentiating(with respect to #) on both sides and expl icitiy

applying the D- operator we obtain the foll owing approxi nate zero field

reduced susceptibility:

IT . V- n?

X s — (23)
t(1-4-3Bm*)
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V¢ remark that the present denominator coincides with that of Eq. (17);
consequently x. and XII diverge at one and the same critical point;
furthermore, in the limit © &> o, xI ’\:XII v/, The temperature depen-
dente of )(II is illustrated in Fig. 3; we remark that in the high tem-
perature region 7 i—a better approximation than XII, whereas at low

I | |
temperatures XI tends to be better than X .

3. CONCLUSION

The spin 1/2 Ising ferromagnet in anisotropic square lattice
has been discussed. All relevant thermodynamical quantities( phase
diagram in the T - a space with a = J,/J,, spontaneous magnetization,
short range order parameter in both x and y directions, specific heat
and zero field isothermal magnetic susceptibility) have beencalculated
in an effective field unified framework which extends that recently
introduced by Honmura and Kaneyoshie. Two slightly different new pro-
ceduresforapproximativelycalculating the susceptibility (whose exact
computation is still to be done) are presented: one of them tends to
be better at high temperatures while the other one tends to be better
at low temperatures.

Although the present approach leads to classical (Landau-type)
critical exponents (as it is the case for most effective-field theories),
and consequently no strict crossover can be observed at the critical
exponents level, this framework is quite superior to the standard Mean
Field Approximation one as it provides: a) a vanishing critical tem-
perature i ,the limit a + 0, b) non vanishing tail in the paramagnetic
phase specific heat; c) critical temperatures, as function of @, which
stand closer to the exact ones (see Ref.(9) for details on this and
other types of improvernents).

V¢ believe the (mathematically simple) procedures illustrated
herein can be useful in order to provide a first insight on a great

variety of complex Ising problems.

One of (E. F.S. ) acknowledges generous hospitality from Centro
Brasileiro de Pesquisas Fisicas where part of this work was done; CT.
acknowledges a Gugghenheim Fellowship (USA).

n



REFERENCES

1. R.V.Ditzian and L.P.Kadanoff, Phys.Rev. B 19, 4631 (1979).

2. D.P. Landau, Phys. Rev. B 22, 2450 (1980)

3. C.Jayaprakash, E.K. Riedel and M. Wortis, Phys. Rev. B18, 2244 (1978).
4. S\V.F. Levy, C. Tsallis and EMMF. Curado, Phys.Rev.B 21, 2991 (1980).
5. F.G.Brady Moreira, |.P.Fittipaldi and R.B.Stinchcombe, J. Phys. C
14, 4415 (1981).

6. R.Honmura and T.Kaneyoshi, J.Phys. C 12, 3979 (1979).

7. H.B.Callen, Phys. Lett. 4, 161 (1963)

8. T.Kaneyoshi, |.P.Fittipaldi, R.Honmura and T.Manabe, Phys. Rev. B
24, 481 (1981).

9. E.F.Sarmento and C. Tsallis, Phys. Rev. B 27, 5784 (1983).

10. t.P.Fittipaldi, C.Tsallis and E.F.Sarmento, Sol. State Commun. 44,
777 (1982).

11. T.Kaneyoshi, |.P.Fittipaldi and H.Beyer, Phys. Stat. Sol. (b) 102,
393 (1980).

12. J.R.L. de Almeida, I.P.Fittipaldi and F.C.Sa Barreto, J. Phys.C 14,
L 403 (1981).

13. T.Kaneyoshi and H.Beyer, J.Phys.Soc.Japan, 49, 1306 (1980).

14. T.Kaneyoshi and |.P.Fittipaldi, Phys.Stat.Sol. (b) 105, 629 (1981).
15. R.Honmura, A.F.Khater, |.P.Fittipaldi and T.Kaneyoshi, Sol. State
Commun. 41, 385 (1982).
16. F.C.Sa Barreto, |.P.Fittipaldi and B.Zeks, Ferroeletrics 39, 1103
(1981).
17. K.Sakata, E.F.Sarmento, |.P.Fittipaldi and T.Kaneyoshi, Sol. St.
Commun 42, 13 (1982).
18. M.Suzuki, Phys. Lett. 19, 267 (1965).
19. T.Tanaka and N. UryGd, Phys. Rev. B 21, 1994 (1980)

Resumo

Discutimos o ferromagneto de Ising de spin 1/2 na rede quadra-
da anisotrdpica. Através deste sistema ilustramos como todas-as grande-
zas termodinamicas relevantes (diagrama de fases, magnetizacao, parame-
tro de ordem de curto alcance, calor especifico e susceptibilidade) po-
dem ser calculadas aproximadamente com um procedimento unificado de cam=~
po efetivo (que melhora substancialmente a Aproximagao de Campo Médio) .
Duas aproximacdes ligeiramente diferentes para a susceptibilidade
(cujo céalculo exato ainda esta para ser feito) sao apresentadas. O modo
através do qual a rede quadrada extremamente anisotropica reproduz a
cadeia linear é exibido. Os presentes procedimentos (matematicamente sim-
ples) poderiam ser (teis para o estudo de problemas de Ising complexos.
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