Revista Brasileira de Ffsica, Volume 13, n® 2, 1983

Common Approximations for Density Operators May Lead to Imaginary

Entropy
KARL LENDi{*®* and MANOEL ROTHIER DO AMARAL JR.

Instituto de F/sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro,
21944, RJ, Brasil.

Recebido em 14 de marco de 1983

Abstract We illustrate the rneaning and validity of usual second order
approxirnations for density operators with the help of a simpleexactly

soluble two-level model in which all relevant quantities can easily be
controlled. This leads to exact upper bound error estimates which help

to select more precisely permissible correlation times as frequently
introduced if stochastic potentials are present. A final consideration
of inforrnation entropy reveals clearly the limitations of this kind of

approximation procedures.

1. INTRODUCTION

Most of the common approximations for density operatorsl’z

involve so many simplifying assumptions that it is difficult to know
anything about the reliability of the final result. However, adjustable
phenomenological parameters help to bring theoretical solutions into
agreement with experimental data. This situation is insatisfactory.

One of the basic approximations in solving the equation of

motion
p(t) = -<[H(2),p(t]] (1.1

for density operator p, with harniltonian

H=n +4&/(t) (1.2)
is to keep only terrns up to second order in the perturbation H,(t) which
may or may not depend explicitly on time. In rnany cases, it is taken to
be a time dependent stochastic potential. The second order approximation
restricts the validity of the solution to a definite time interval 7(2).
Any further approxirnations such as, e.g., statistical averaging under
the assumptions of simple line shapes for two-point autocorrelation
functions for #, and corresponding correlations times, '‘coarse graining"

(2)

procedures, etc., have to be chosen with respect to T . In general, it
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may be quite difficult to give reasonable quantitative estiniates for
T(z) and it would be desirable to have a simple model where all quan-
tities of interest can be controlled. Therefore, we considerthe exactly
solvable case of a two-level system and inquire about the relative
error A between exact and second order solutions as a function of time.
This analysis is by no means only of academic character because many
processes may appropriately be described by such a model as, e.g. prob-

122 photo-physical processes3, chemically

lems of magnetic resonance
induced polarization phenomenal‘, geminate radical recombinat ion® and
delayed fluorescence in magnetic fields®, etc.

The following section 2 contains a brief summary of genera
formulas which will be evaluated explicitly for our model in section 3

The relevance of the results is discussed in the Final section 4.

2. GENERAL

In order to give upper bounds of error estimates for A, the
relative difference between the exact and second order solution of eq.
(1.1), it is most convenient to choose a time-independent perturbation
H, in such a way that any explicitly time-dependent operator Hl(t) is

maximized through

I

WA, () <l Bl (2.1)

.., denotes the ordinary operator norm . Uni-

tary transformations for time evolution are defined by

for all times, where !I

<
<
—
o
~
|

= exp{:-ngt:] , : (2.2)

.l

—

<
|

= exp -<Ht] . (2.3)

The formal solution of eq. (1.1) is then

The approximate solution is most conveniently derived in terms of the

interaction representation,

p(t) = U (B)p(e)U,(2) , (2.5)

H,(8) = U-E(t)HlUO(t)

(2.6)

for P and &, respectively. The corresponding equation of motion in

integral form, up to second order, reads
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where we have abbreviated
t -
jl(t) = J ds H. (s) (2. 8)

A further common step is the statistical averaging <...> of (2. 7) under

assumptions like, e.g.,

<#,(t}> =0, (2. 9)
<H (£)8(0)> =0, (2.1 0)
<A (£)H,(s)p(0)> = <A, (£)F, (s)> B(0) , (2.11)
<H, (1) (-6)> = cls) , (2.12)

where this last equation defines a correlation function G of a station-

ary random process1 with corresponding correlation time T, say. Any

matrix elementGi k(s) is assumed to be a positive, monotonically decreas-

ing function of [sl with infinite limes zero. In view of these assump-

tions it is enough to postulate for our extremal error estimates
(6,,(0) , lsl<t,

G (8) =J (2.13)

[ 0 sl

For quantities of direct physical significance like, e.g., the diagonal
elements of the density operator, the relative error of interest to us

may be defined through

@
Akk(t) = \6kk(t) - pkk(t) I/pkk(t) (2-”")

The foregoing general formulas are going to be used in the analysis of
a two-levei model.

3. THE TWO-LEVEL CASE

W work directly in a matrix representation in which the Pauli-

matrix O, is diagonal and introduce the four elements

[

[ S
-

bl =]
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which form a complete basis for any hermitian (2x2)-matrix. Then, a gen-

eral two-level system may be characterized by

Hy = [E 0] = €0, , (3.2)
0 -¢

B = [0 )‘] = )0,

v o , (3.3)

where Hl does not depend explicitly on time (see eq. (2.1)), and for
the subsequent considerations the weak condition A<e will be sufficient.

The exponential forms in (2.2) and (2.3) can be reduced t©

U,(tt) = a cos(et) * £ Hy sin(e) (3.4)
U (*t) = 04 cos(t) 1% H sin($t) (3.5)
6 = (e2 + 2127y /? (3.6)

With the help of these relations the solution (2.4) of (1.1) is found to
be -
0(%) = p(0)cos® ($t) +% [p(0),H] sin(¢t)cos($t)
*7612- (Ho(0)B)sin® () , (3.7
For the second order approximation in the interaction representation we

need the explicit form of (2.8)

c;l('l‘;) =éH1 sin(et)cos(et) ~~2— g, sin®(et) , (3.8)
0 (5) = 00) - & [, 00 sin(2et)
+ 2 [02,000 - cos(2et)
+ I—I - EJI, [HI,D(O)]:[(COS(“%)-U
[X>
+ -_% Hy, [Oz,p(ol.ﬂ (4sin(2€2)-sin(4et)-het)
16€
o -2 Jou, 00011 ] (het-sinuen))
16¢€
A2 -
- — ]}2, [_cz,p(o)]:[(cm(het) -heos (2et)+3) . (3.9)
)
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We proceed to evaluate the formulas (3.7) and (3. 9), without loss of

generality, by choosing as initial condition the pure state

e(0) = L OI ; (3.10)

0 0

and considering, for simplicity, the (22)-elements

522 (8) = () 7sin (et (3.11)
5820 (5) = D) 2sin(er) | (3.12)
This yields for (2.14)
! A2q sin?(€%) ‘
B(8) = | 1 - De(@?r 2220 | (3.13)
e ! G sin(¢z)

and we have obtained a simple analytical formula for the relative error
between exact and second order solutions of (1.?) as a function of time.
For times which are short cornpared to 2m/$, the following expansion of

(3. 13) may be used,
2
8,, () = Gt + 7>+_5 (e24302) " . (3.14)

4. DISCUSSION

One can easily verify that, in the range of validity of formula

(3.14), theerror is extremely small, e.g. for t; < 1/10e, one would
find A, < 33 ppm for E = 101. For longer times one preferably uses

(3.13) and gets, €.g.,

PP

1

0.36% for &, = 1/e , g = 104,

Ayy = 9.9% for T 9m/10¢, €= 10A,

Equivalently, one may say that for a given error tolerance f (= A,,)

2
the time interval T ., mentioned in the introduction, is given by
2) . 1/2
2z g, (4.1a)

or, corresponding to the full expression (3.1%),
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" 12 y1/2
_, —= ) |
) = j LR +%fl_3+(§)2]* -1]? (4.1b)
| 2(e%432%) 2 )
if T(z) << 2m/¢, whereas for the other cases the transcendental equation
2

(3.13) has to be solved on the computer in order to find T
More realistic shapes for the correlation function (2.13) tend

to reduce the values of A and, therefore, T 2 represents an absolute
upper bound for permissible correlation times T in those cases where
one can use equations of motion with constant transition rates. This is
usually done in the Bloch-Wangsness-Redfield approach2 where a coarse

graining time At is introduced, subject to the condition
ot >> T (k.2)

and, simultaneously, At has to be much smaller than the inverse of the
norm of the redfield matrix. The present analysis suggests that, for

2
sufficiently small T( ), mndition (4.2) ir too strong, and Af may even
be of the order of Tes but, of course, At > T- Furthermore, particu-

larities of the shape of the correlation function will not be able to
play a decisive role in this case, and thisis the reason why very simple
line form as, e.g., Lorentzian shapes, have been successful inmost
applications.

The error introduced in the expectation value 5,

0 = Tr(p0) , (4.3)

of any observable 0 depends also on the properties of this operator
and must be discussed for every particular case. Within this model, it
could be computed exactly, of course.

Apart from the diagonal matrix elements of the density operator
there is ome more important quantity defined entirely in terms of o0,

namely the information entropy S, given by
5(t) = - Trip(t}np(t)) , (4.4)

whose error may be calculated similarly. We note that S is wunitarily

invariant,

5(¢) = 5(0) (4.5)

for the exact p, at least as long as we do not perform any kind of

statistical averaging like, e.g., in egs. (2.9) to (212 Any time-
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~dependent change in entropy is therefore entirely due to the second

order approxirnation and has no physical meaning. For a general initial

w

condition,

p(0) = 1l a0, , (4.6)

. 7
=0

the exact result for S in terms of
3 1/2
o - [ } a2 ] (4.7)
7

is found to be
§ = tnz-+ (1+20)&n(1420) -5 (1-20)20(1-20). (4.8)
Because of the spectral condition for the density operator,

< e ll<t (4.9)

we find the possible values of a in the closed interval

0 <o< g (4.10)

and, consequently, the entropy varies monotonically between zero and

4n2. To illustrate the problems arising in the secondorderapproximation

it suffices to choose,for simplicity, a somewhat more special initial
condition of the form

() _[x 0

ot =5y (4.11)

and the error may be expressed in terms of the occupation probability
difference
A=y -z (4.12)

One finds from (3.12) the closed representation

NO M
017 (t) =) by(t) o, , (45.13)
7=0
where the coefficients are given by
b, =% » b (¢) = A—é— sin?(et)

bz(t) = A% sin(et)cos{ct) ,

o
w
—_
5
—
1

= A [ﬁ sin®(et) - 1 (4.14)
2 2 :
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A

Condition (4.9) and the normalization of p( )(t) impose a restriction

on the initial conditions,
n
0 < Al < -—2—>}— siner(?) , (4.15)
€‘+
(2)

where T << 2m/¢, as before, This means that it is possible to calcu-

late a relative error in entropy,

_1sw)-sP e ] so-st

)
88 (t). . (5.16)
| 5(¢) Lo S(0)

After some algebra, we find

4
- ) b 2
55 = 4| w%-)— %sin(er( ) (4.17)
o (%) ‘
For a pure state as initial condition, [A| =1, and one discovers the

~

2
strange result that the entropy calculated for p )(1;) becomes complex.
This shows how this kind of approximations can be stressed ad absurdurn.
It is therefore a necessity to base reasonable approximation procedures

on exact Master equations®’?

and to maintain always the normalization
- and spectral conditions for tlie density operator. For a certain class
of stationary problems this has been done by one of the authors!®, and

work on time-dependent problems is in progress.
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Resumo

Nos esclarecemos o significado e a validade da aproximacéo
usual de segunda ordem para operadores de densidade com a aiuda de um
modelo simples a duas dimensoes, resolvivel exatamente, em que todas as
quantidades relevantes podem ser facilmente controladas. Isso permite
uma avaliacao exata do limite maximo de erro, o que nos ajuda a sele-
cionar mais precisamente os tempos de correlagdo permissiveis, que sdo
frequentemente introduzidos se potenciais estocasticos estdo presentes.
Um consideracdo final sobre a informacédo entropia revela claramente as
limitacoes desse tipo de aproximacgéo.
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