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Abstract  \\¢ calculate the energy dispersion relation for the wvalence
band of the double sine-Gordon potential, approximating the tunneling
amplitude by a sum of contributions of instantons and anti-instantons
trajectories. The interesting feature of this potential is that we now
have to deal with two types of instantons, as there are two different
potential barriers within one period of the potential. " compare our
results with the standard WKB approximation.

1. INTRODUCTION

Recently there has been great interest in the study of poten-
tials with degenerate minima in view of their application in condensed
matter physics, through the study of soliton statistical mechanics" as
well as toy models for non-perturbative phenomena in field theoryz’s"‘.
In particular there have been detailed analyses of the double-well
anharmonic potential, V(z) = a(x?-a?)? °*° and the sine-Gordon periodic
potentialz’s.

In this paper we consider the double sine-Gordon potential7
which has the interesting feature of presenting two typeof instantons,
due to the different barriers within one period (figure 1).0ur approach
consists in using the semi-classical approximation to the path integral,
in order to compute the tunneling amplitude for large Euclidean time
interval. In this approximation the path integral will be dominated bya
dilute gas of instantons®. The new aspect of our calculation is that we

have to take into account the contributions of the two different types
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Fig. 1 - The double sine-Gordon

potential, V(z) =o(cos 5 - B)?

with period 4m, here shown for
2T -T 0 T 2m X P ’
a=»L4and 8 = 0.5.

of instantons present in this model, to the energy of the valence band.
V¢ then compare the dilute gas approximation (PGA) with the standard

WKB approech in the tight-binding approximation, finding the well-known

discrepancy between the two methods, by a factor of (e/w)l/2= 0.93 %26,
2. INSTANTONS IN THE DOUBLE SINE-GORDON POTENTIAL
The potential (figure 1) is given by

V(x) = alcos é— - B)? (1)

We study the instanton contributions to the tunneling amplitude.
Due to tunneling, there resultsa band structure for the energy
levels of such a periodic potential.

W start with the Euclidean tunneling amplitudea

G(n+,n_,T) = <n+|e_HT/ﬁ|n_> (2)

for the transition between two minima ln_> and ln+>, separated by an
integer multiple of the period (4w). Let us remark that since we are
interested in obtaining the energy band of this potential, we must con-
sider the transition between minima separated by an integer multiple of
the period, so that eq. (2) is the correct starting point.

The two types of instantons in this model connect successive
minima separated by the small or by the large barrier. The instanton is
the classical zero energy solution of the Euclidean equation of motion,
which minimizes the action in the large time interval Timit, T+, e
have instantons, named of type 1

1/2 —
x = L tan-1 H:—;g] tanh th (2a)
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which connect minima separated by the small barriers and instantons

of type 2, 1/2

z, = 4 tan-1 H]‘—;—S—J cotanh wt] (2b)

which connect minima separated by the large barriers and the respect-
ive anti-instantons obtained by making t - -t. In the above equations,

w is the curvature of the potential at the minima

w=[a0 - 82)/q"? (3)
The Euclidean action for each type of instanton is

S, =8y - 8w B cos ' B (ka)
and S, = 6, + 8w B (bb)

In this DGA, the space between the two minima n, and n_ is
filled with non-interacting instantons and anti-instantons, separated

by a large interval compared with the instanton size w ' e, The fol-

lowing condition has to be satisfied by the number of instantons and

anti-instantons of the two types

n-n=m-=-m

n (5)

n
= 4+ - -
where n(;z) is the number of (anti) instantons of type 1 and m(m) is the
number of (anti) instantons of type 2. Summing over all such configur-

ations, the Euclidean tunneling amplitude is written as

1/ 2 ) 3 -S1/F\n4n
~wT (K,T e
G(n+,n_,T) _ ﬁ(%ﬁ I /2 y ) 1 __ )
n,;l=-'0 m,7;7=0 ne (6)
(Ko7 e—sz/ﬁ)mw?z
_ n—ﬁ,n -n 6m—n_1,n -n
m m + - + -

K1 and X, are the determinants of the quantum fluctuations around the
instantons 1 and 2 respectively and are given by
(5 1/2 det(—3;+w2) 1/2

K, = 2 - (7)
’ 27H det!' (—3t+V“(xl<’2))

where det' is the determinant without the zero mode. The zero mode x°

is proportional to dxl 2/dt and is normalized as follows
"0 - (g )72 iifc_l.ﬁ (8)
xl’z B 1’2 dt
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it has the asymptotic behavior

2 a7l (9)
P2 gl 102
where
A = 200-80)% (s, )7 (10)
1s2 ’
Following Coleman®
1/2
_ 1/2
= (2w) Al,2 (in)
So that,
3/2 1/2 -
K, =X, = K= 20 / (1-82) / (w#) 1/2 (12)
We can rewrite eq.(5) as
~wl/2 -5/
G(n+,n_,T) = (w/m‘i)l/z Plie / Im__n_(ZKTe 51/ )
S2/%
. In+—n_ (2KTe ) (13)

where In is the modified Bessel functicn cf order n (Watson 1944, ref.

9).

The Bloch waves can be wiritten as

|6> = (w/ﬂﬁ)—ljk (2?(}_1/2 Z eine|n> (14)

==

and they diagonalize eq.{13), giving for the energy eigenvalue E(8) the

following relation,
o - . =in ©
JE®T/A_ mul/2 oy T (2x7e 51/ %) I (2K7e S2/Ry, T+ (15)

n ==0 4 +

+
Using an addition theorern for Bessel functions?, eq. (15) can be written

as
e—E(e) T/ﬁz e‘wT/Z T (Z) (]6)

[
where

_ -11/2
z = 2KT lje_zsl/ﬁ + e-zsz/ﬁ + 2e (81+5,) /7 cos(i[

a7)
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from which we obtain, in the large T limit,

_ _ _ 1/2
E(8) = Tw/2 - 2%K E 25117 + e 252/ + 2e (51482) /7 cose:I

(18)
Using X given in eq. (12), we arrive at the energy dispersion relation
for the valence band of the double sine-Gordon model. Notice that our
resulting expression for E{6) is not a simple sum over thecontributions
of each of the two types of instantons, as might be naively thought be-
fore doing an explicit calculation. In the limit B0 we do obtain the
band structure of the sine-Gordon model?’®, as can be easily seen from

eq. (18) putting S1 = S2 .

3. COMPARISON WITH THE WKB APPROXIMATION

Following the standard approach to tunneling processes in the
WKB approximationlo, it is straightforward to generalize the method to
the case of different barriers within a period. The energy dispersion

relation for the band is given by

cosh = 2 cos? G“(eTI + 7]0_ e Ty ("2 4 1]‘— e 12y - -;—(eTl—Tz +27) (9)

with = m £ 0 £ 7™ and

“o

5, = (/1) j [z(g-v(x)) V2 g (20a)
Yo
Y 1/2

T, = (1/7) J ’ EZ(V(x)—E)—[ dx (20b)
_yo -
Y, _‘1/2

T, = (1/7) j [Z(V(x)-E)( de (20¢)
- dl

0

T, and T, are the penetration factors for the small and large barriers

respectively (yo, x, and y, are consecutive classical turning points) ,

o, is the integral of the momentum in the classically allowed region.

0
Each of the integrals in eq.(20) are combinations of elliptic

integrals of the three kinds, Furthermore, T, and T, are related in

the same way as S2 and S before (see eq. (3b))

T, =T, + 8mwB/ % (21)



Working in the tight-binding approximation®, where

€ = E/o << | (22)

and using tabulated asymptotic expansions for the elliptic integrals

of the three kinds"", we find that
£(8) = /2 - kMRS (1ymy . (1-2) % (7B 25/R

(51+32) /7%

+ 22 cosf) 1/2 (23)

with S, and S given in eq.(3) and related to 7, and 1, (eq.(20)) as

follows

T, = 8,/h - 1/2 - sLnE(l-sz)e'l/ﬂ (24)

and similarly for T,.
Comparing eqs.(23) and (18) we see that the two results differ
by a factor (e/n)l/z, that is

AE
WKB

inst

)1 7% = 0.93 (25)

= (e/w

The same factor had been noticed before?’®’7 for the double-well
anharmonic oscillator and the sine-Gordon potential. Its origin lies in
the linear interpolation formulae used in the WKB approximation. Hadwe
used a quadratic interpolation the agreement between the two methods

would have been complete®=" .
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Resumo

Calculamos a relagéo de dispersdo para a energia da banda de
valéncia do potential duplo sine-Gordon, aproximandoa amplitude de tu-
nelamento por uma soma de contribuicdes de trajetérias de instantons e
anti-instantons. O interesse nesse potencial advém do fato que temos
agora que lidar com dois tipos de instantons, uma vez que existem duas
barreirasde potencial diferentes em um mesmo periodo. Comparamos nos-
sos resultados com a aproximagdo WKB usual .
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