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Abstract W present a detailed discussion of certain exactsolutions, in
vacuum, of our recently proposed equations for Poincaré gauge field
theory. The construction of the solutions involves ansdtze and methods
well-known in Instanton Physics.

1. INTRODUCTION

Recently we proposed a dynamics of Poincaré gauge theory based
upon a generalised Hilbert action in the principal bundle of orthogonal
frames over space-time, endowed with a metric constructed from the
Lorentz connection and the solder form'. In the absence of matter the
only dynamical variables are:

a) the vierbein field sla(x) and its inverse aai(x), with the related
wg O 1) 06,7'(‘”) yl

metric g,.{(x) =n
J EXB] .
b) the metric connection coefficients Ti (x), antisymmetric in ]:OL, B:l

and given in matrix notation by Fi with matrix elements

oy ]
o _ LY
FiB nBY Ti
The equations of motion are:
. a
VF..”, =10
Fw 8 )
]
. T T .. e =
R,LJ 2 R gzg A gw + T?/J 0 (2)
where
= - 1B}
Fop= 8,0~ 8T, + Jﬂ;»TJ-]

is the curvature of the Lorentz connection, while Rij and R are re-

spectively the Ricci tensor and the curvature scalar of the Riemannian

(*): Latin indices refer to holonomic components, while the greek indi-
ces, single or in antisymmetric pairs, refer to the Lie algebra of the

Poincaré group. The Minkowski metric is n = diag(+,-,-,-).
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connection defined by the Christoffel symbols {gq}'

P _ Py p p ry . ¢P r
Fbe = a0 - o + G G - B )

and R = gkq qu

In eq (2) we allow for a cosmological constant A and Tij is the 'en-
ergy-momentum'' of the field F'ij given by

T ik _ 147 FkSL

T i= AMTr (7 ij) T 8 i Tr( Fk!&))
where h is a coupling constant with the dimensions of a length squared.
The covariant derivative in eq (1) is that introduced by C.N.Yangz: the
connection coefficients for holonornic indices are the Christoffel sym=~
bols, while for anholonomic indices they are given by the F?R 's.

In a holonomic gauge the Lorentz connection and curvature are

given by

B =P 1% 0B P 5.0®
1q a 1B T g a 7 q

F.P =P B B
i3 q aZi B q

and eq (1) turns into
i p % F.OP -
v ijq+[—7l’7lg'jq—0 (1)

where

B =1 - &,
iq iq ~ ‘iq

is the contortion tensor.

In section 2 we introduce the ansatze leading to exact sol=
utions of the coupled eqs (1)' and (2). The work of J. Cervero, L.
Jacobs and C.R. Noh1® and of A Actor" is briefly recalled in section 3.
Their construction of solutions of the equation OIf/f® = constant, in
Minkowski space-time, is applied to our problem in section 4. Some fi-

nal comments are made in section 5.

2. THE ANSA1ZE

Generalising the 't Hooft-Corrigan-Fairlie-Wilczek5 ansatz to

curved space-time, we look for solutions of egs (1)' and (2) with tor-
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sion generated by a scalar function. The contortion tensor takes the

form

£ =4,
’L

P J
iq q 1In ¢ (3)

J
with

P _ D
4P =P 4. - L. 4.
ij q i 94q Spagw

The corresponding curvature is given by

p_p,p _ 1, p 8B p k.
i a” Fij q ZAquT 48 g 800 - 157 5 039) ()
where
k
I RN =t }
* : Lk | 00, 20000
5.7 (¢3g9) = -2 8¢ — (5)
7 ¢ ¢2 I %[(1) ¢2

and eq (1) ' becomes

Z . O¢+ B/6 ¢
i P e, P 3O 1P g2t
iJ q ij q ¢ 2 7ig q e

where Vijp4 is the conformal Weyl tensor

P _p P lAka-Aka - R/6 4..P
Vi TR a7 Yale By T A g T TR AR

A contraction of the indices J and p shows that the above equation is

equivalent to the pair

I+ R/6 ¢
;g ———— =0 (6a)
¢° '
Z p p 8¢= 6b
vwijq»fwijq———(b 0 (6b)

To simplify further we assume that space-time is conformally
flat so that the Weyl tensor vanishes and eq (6b) is automatically sat-
isfied. The metric tensor is locally of the form

7/J(x) = p®(x) nsj (7)

From the identity
a¢ + R/6 ¢ e
T3
¢ v
where y = p¢ and DM is the Minkowski Dalembertian, it follows that eq

(1)' finally reduces to
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me/w3 =1 (8a)

where 4 is a constant.
Since the energy-momentum T’L;7 is traceless, eq (2) implies that

the curvature scalar is constant
R = 4A

For conformally flat metrlcs one has the identity

=0 8
R/6 P/ e
which now becomes an equation for the conformal factor p:
qu/pa = (2/3)A (8b)
Finally with the above ansdtze we notice that
R., - Rg..=235..(p;n)
iy F g A
and C}W
= - 2 .
i =" e " 5,5 (Wsn)

Substituting these results in eq (2) yieh]s

p? S{j(p;n) - 2xn¢? Sij(w;n) =0 (8¢c)

The ansatze expressed in egs (3) and (7) have thus reduced the problem
of solving the egs (1)' and (2) to that of finding solutions of egs
(8a) and (8b) that are related by eq (8¢).

3. THE MERONI SOLUTION AND THEIR ELLIPTIC EXTENSION*

[N

It has been shown®’* that, if f{z) is a solution of

OFf/ff = v,
M
then a solution F{z) = flz) E(u(x),m) of

DM F/F} = v

can be constructed by the following procedure:
1) the Jacobian elliptic function E{u,m) of argument % and parameter m

is solution of the differential equation
E'+aE+bE =0

* Squares and products of fourvectors in this section are to be taken

with the Hinkowski metric.
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where the constants a and b are functions of the parameter m, depending
on the particular elliptic function considered®.

2) the function u(x) has to satisfy the equations

2 3u.9f + f‘DMu =0 (9
and

a du.du = v, f (10)
3) the constant v is related tov, by v = -(b/a) v,

W shall be particularly interested in the meron function

Fla) = A((e+iv) ? (x-20)2) "2

which is solution of

0O r/e3 o 242

M_T/f Lp®/a
where V is an arbitrary spacelike or timelike fourvector.
The corresponding function u{x) exists and is given by

u(z) =a % o)
where

8(z) = (2/2)an[(w-1) 2/ (x+iv) ?]= tg ‘1 (2)

with

T(z) =2x.v/ (z2~v?)

The pair of functions f(x) and €(x) satisfy the remarkable properties:

fo9, 9,0 8k6 3,f + 9,6 'c)kf T My, 36.3f (9)'

k
28 918 = 11; Mgy Vo £° 7 5y, (F3) (10)"

3
These properties imply egs (9) and (10) and also that
2 . _ 2 .
F Sk1(F’n) =2 (e/a)f Sk1(f’n)
where ¢ is the value of the first integral of the elliptic equation

e =E'%+qakE?*+ (b/2) E*

and is a function of the parameter M
The singularities of f{x) and the choice of the branch defining

€{x) depend on the type of the fourvector v. We consider 1) Timelike V
0

(v' >0, without loss of generality). The rneron function f(x) is regular

()
~x
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everywhere in Minkowski space and the two-sheeted hyperboloid, x2-v2=0,

divides Minkowski space in three regions:

I={zx] x> -v2<0}
7, = {z] «* - v*>0, z.v > 0}
IT_ = {z]| «* - v*>0, z.v < 0}

Ve may def'ine 8(x) continuously over the whole of Minkowski space by:

B(x) = Arctg Tlx) , X El
Arctg T(x) - T , x E 13+
Arctg T{x) + 7 , x E IT_

. L -1 . .
where Arcty is the principal branch of tg ~. In this range 8(x) varies
from -T to 47, but if space-time is confined to the region 7, thevalues

of 6(x) are restricted to [-m/2, +1/2].
2) Spacelike v

The one-sheeted hyperboloid, z2-p? = 0, has now a non-void intersection

with the plane z.v = 0 and f(x) is singular there. At fixed time z° the

singularity is located on a circle in the plane x.v = 0. We have now
four regions to consider:
[+ = {z]| x2 -Vv2 >0 z.v>0}
I ={x]x?-v®>0 xv<0}
1+ = {2 x? -Vv2 <0, x.v >0}
IT = {z| x* = v* <0, xv < 0}
and alsol =T u I , X=1II ull_.

To determine 6(x) we have two possibilities, one of which is

Q(x) = Arctg T(x) X €l
Arctg T(x) +m x E 13+

Arctg T{x) -7, x E IT

The function 6(z) has a discontinuity of 2% across the plane x.¥ = 0 in

region A1 and is not defined on the two-dimensional hyperboloid 22-v?=(,
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¢, = Q Over the rest of Mnkowski space g(x) varies in the interval
[-m,+1] . Agaln if we confine space-tine to region I,8(x) varies in the
range [-m/2, +n/2].

4. THE SOLUTIONS

A study of the twelve Jacobian elliptic functions® shows that
there are only eigth independent solutions: a first class of four {sn,
ns,cd,dc}, with argunent u(x) = (l+m)-1/2 8(x) and paraneter m varying
in the range [0_.1], and a second class of four {ecn,nc,sd,ds} wth argu-
ment u(z) = (1-2m)""/% 0(z) and paraneter in the range [0,1/2].  The
logarithmc derivative of these functions have sinple poles on the rel-
evant interval of the real axis at the origin or at #X(m), where X{(m) is
the conplete el liptic integral of the first kind. A pole at u=0 would
correspond to a singularity on the hyperplane x.» = O Himnating this
possibil ity we are left with {cn,nc|m £ [0,1/2]}and {cd,dcim E [0,1]}
which have poles at #k(m). In the first case X¥(m) is always smaller
than (l-2m)-1/2'n/2 so that a singularity is always present in region I.
These solutions are thus also elininated and we are left with the two
functions cd{u,m) and dc{u,m). It was shown® that X(m) is larger than
(l+m)_1/27r for m, < mZ1, where m_ m 0.827 is the solution of K(mc) =
= (I+mc)-l/27r. This neans that cd{u,m) and dc{u,m) havenosingularity
for these val ues of the paranmeter in the whol e of Mnkowski space, for
timelike v, and that the only singularity, for spacelike v, is |ocated
on the two-di mensional singularity hyperbol oi d described above.

Wen the paranmeter m varies in the interval E),mc] we have a
singularity in region 11, but we still can allowfor such a solution if
we restrict space-tine to be confornal to the region | of M nkowski
space. The physically acceptable sol utions are thus

E, (x) = cd(a-l/2 8 (x) ,m)
with
a=1+m,b=-2m C =1

and its inverse
£, (@) = dela™/? 8(z),m)

with
a=1l+m, b=-2, ¢c=nm.
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A first type of solution is obtained taking the conformal

factor equal to the meron function of section 3:

oz} = flz) (12a)
The contortion scalar function corresponding to this choice is
¢(x) = E Jx) (12b)

and the constant u of eq (8a) takes the value

u, = 2m (1+m) t r/6

[

2 (1+m)™" R/6
The curvature scalar of such a space-time is given by
R = 24 v2/4%
In order ttiat the relation (8¢c) be satisfied, the curvature scalar R,
the couplirig constant A and the parameter m have to obey the relation
AR/6 = (V+m)?/hm (12¢)

In the 1imit when m tends to 0, dc(6,m)=sech, and in regipn 7 we have

b (@) = (1 - 22/v2)7" a/|v?]

The corresponding curvature Fi.p satisfies the duality condition of

J q
ref.1 but the relation (12c) cannot be satisfied for finite A.

>

The other type of solution is constructed taking ¥ = p¢ to be
the rneron f'unction so that the conformal factor and the contortion scal-

ar are given by:

o {x) = flx) E (x) (13a)

s 2

<
—
8
=
Il

(B, )7 =  (x) (13b)

241

The corresponding curvature scalar is given by

=1
R 12m (Y+m)  Lo?/42

1

R, =12 (lsm)™ ko?/a?

The relation between curvature scalar, coupling constant and parameter

reads
AR/6 =2m (14m) " (13c)
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in the limit when m tends to 0 the solution pz(x) corresponds to a de
Sitter space with curvature R = 48 v2/4%.

Choosing A = ]v|2 we recover a standard form of the de Sitter metric
- - I Jy-1
plz) = (1 - R/L8 ninX)

and the torsion scalar is ¢,(x) = cos 6(x).

In this 1imit eq {13¢) is only satisfied for zero coupling AX.

5. DISCUSSION

To investigate the physical significance (if any) of the ob-
tained solutions it is necessary to study the motion of a test particle
in the resulting fields according to the equations of motion obtained
in reference 1.

When the fourvector v is spacelike the fields have a singular-
ity which has the same topology as the singularity of the Kerr metric
It is generally expected that the Kerr metric should play an important
part in the description of the interaction of matter with intrinsic
angular momentum. The ansatz on the conformal flatness of space-time
naturally excludes this type of metric.

Our attempts to use a general Kerr-Schild ansatz forthemetric
were unsuccessful. An investigation of the conformal transformation prop-
erties of the theory seems to indicate that the success of the 't Hooft-
-Corrigan-Fairlie-Wilczek ansatz is intimately linked withthe conformal
flatness of the considered space-time.

A way out migth be found if there are non-trivial solutions of

eq (6b).

This work was partially supported by CNPq through a grant to
the Theoretical Physics Group of the Departament de- Physics of the Fe-

deral University of Rio Grande do Norte.
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Resumo

Apresentamos uma discussdo mais detalhada de uma certa classe
de solugdes exatas, no vazio, das equacdes que propusemos recentemente
para a teoria de calibre do grupo de Poincaré. A construgdodas solucdes
se baseia sobre hip6teses e métodos bem conhecidos na Fisica dos Ins-
tantons.
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