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Abstrart W& show, in the context of non-relativistic potential
scattering, that the appropriate scaling variable for the deep inelastic
region is riot the usual Bjorken one xp = Q%/2Mv but instead,the vari-

able y = (Zm\)-gz)/?_q.

The y-scaling is shown to be obtained in a natural way by using
the WKB approximation. Numerical results are presented comparing the
approach to scaling in terms of X5, and vy.

J

1. INTRODUCTION

The deep inelastic scattering of leptons by hadrons is one of
the most powerful tools for testing the hadronic structure. Since 1968
a great deal of experimental results have met in evidence a composite
picture of hadrons. The data are compatible with the view of hadrons as
being composed of point-like (structureless) constituents. One of the
most important evidences for this is the so-called Bjorken scaling,which
may be interpreted as reflecting the fact that, in the timit of |large
momentum transfers (very short distances), the point-like constituents
behave as quasi-free particles; as a consequence, the cross-sectionsfor
deep inelastic scattering appear to be independent of any scale of mass.

However, there is another striking feature coming up from these
experiments: the constituents have never been observed in final states,
in which only ordinary hadrons are found emerging frorn the scattering.

So, the data confront us with an apparently ambiguous situation, i.e.,
the constituents when tested at short distances behave as quasi - free

particles although they seem to be permanently confined in the interior
of hadrons at large distances.

More recently Quantum Chromodynamics (Qcb)? was proposed as a
candidate for describing strong interactions, whose predictions have
been shown to be in good agreement with experiment. Among the results

that can be understood in QCD we mention the precocious scaling, re-
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flecting the smaliness of the QCD fundamental length parameter, 4, and
scaling violations in the deep inelastic scattering of neutral and
charged leptons by hadrons?. However it is still not perfectly estab-
lished that QCD confinesthe constituents to the interior of hadrons, as
it would be expected in accordance with the experimental results?®,

Deep inelastic scattering processes may be treated in anon-rela-
tivistic Quantum Mechanicai framework, sincethere is a complete analogy
among the variables that describe the processes in the relativistic as
well ai in the non-relativistic treatnient. Making use of this
analogy we may consider deep ineiastic scattering in a non-relativistic
framework as a ''laboratory'for testing the hypothesis of pernianent con-
finement and see if the latter would destroy Bjorken scaling. The per-~
manent confinement is simulated non-relativistically by the assumption
tha: the constituents are confined in a potential that increases with
the distance.

It is clear that the mentioned non-relativistic framework isnot
indicated to be appiied to high energy processes since thesearestrickly
relativistic. However We find its applicability in ncclear’ plysics, more
specifically, in inelastic scattering of electrons by nuclei®.

Many authors have focused their attention on the problem of deea
inelastic scattering treated in a non-relativistic framework. Amongthem
we find the work of G B. West®, which sets up the formalism for the non
-relativistic treatment and obtciins the analogue, in this framework, of
the Bjorken scaling {z-scaling). He also iritroduces the so-called y-
scaling by means of this formalism. The work of P.M. Fishbane and M.T.
Grisaru® analyses some specific examples of confining potential, obtain-
ing the analogue of Bjorken scaling for them. J Bellandi Filho' treats
the problem of deep inelastic electron scattering by a two spinless
bound state (whose interactions is supposed to be of the harmonic os-
citiator type) and observes the scaling behaviour of thestructure func-
tion in the Bjorken limit. Another work, by G.C. Marques and C. F. Wey
Jr.B, studies the scaling laws of Many Body Systems in close analogy
with the relativistic case, taking recoil effects into account. Finally,
we should mention the recent paper by J.D. Bjorken and H. S. Orbach?,
which is closer to the spirit of our present work, approaching the y-

scaling behaviour of the structure function in a semi-classical way.
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We should briefly mention the different roles of x—and y-scaling
in the non-relativistic framework. The former is reached when we con-
sider the Bjorken limit of the structure function VW(V,EZ),V and 32
being, respectively, the energy and squared three momentum transferred
by the virtual photon (using the Born approximation). In this limit, the
x-scaling is obtained in the form of a delta function whose argument
depends exclusively on x = EZ/ZMV and in this case x is equal to the

52827 The problem with this non-

inverse of the number of constituents
-relativistic version of Bjorken scaling is that it givesno information
about the initial momentum distribution of the constituents in the in-
terior of the target, differing considerably from the relativistic ver-
sion which explicitly associates the scaling variable & = -q%/2mv (g is
now the four momentum transferred) to the fraction of hadronic momentum
carried by its constituents. This is precisely the difference whichwill
favour y-scaling in the non-relativistic limit. What we observe then is
that gl turns out to depend only on y =(2mv-qzy2q {m is the constituent
mass) and this scaling behaviour is obtained in terms of a Fourier
transform in momentum space of the (initial) ground state wave-function
Being so, it is possible for us to know the initial momentum distri-
bution of the constituents inside the target.

This paper is organized as follows. In section 2 we compare the
roles of x-scaling in the rejativistic context and yscaling in the non
-refativistic framework. In section 3 we show a procedure which enables
us to obtain y-scaling in a natual way, by considering the WKB approxi-
mation for the wavefunction of the final state. We also compare this
procedure with the result obtained for an exact case - the  harmonic
oscillator potential. In section 4 we show the numerical results for two
specific examples of confining potentials, comparing the approach to
scaling in x - and y-variables. Finally, in section 5, some comments

are present=d in conclusion.

2, x- SCALING VERSUS y- SCALING

in 1969, R.P. Feynman, J.D. Bjorken and E.A. Paschos introduced
the Parton Model!? in order to describe the hadronic structure as mani-
fested in high energy collisions. This is a model inspired on Field

Theory in which, whenever it is possible, all complications inherent to
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Quantum Field Theory are duely neglected. The quanta of the fundamental
fields are simply called partons and the conditions assumed in this

model are such that the interaction among partons is switched off when
they are tested by leptons in deep inelastic scattering.

The hypotheses made in the Parton Model are equivalent to con-
sider as relevant for the inelastic lepton-nucleon scattering only the

handbag diagram, as shown in Fig. 1.

Fig. 1 - Handbag diagram for

deep inelastic electron-nu-

cleon scattering.

The cross-section obtained by means of this diagram is given
byllz
2(.2,.2
(d%c = 2me [S——@—{—}deZe%mf(x)S —t—+xJ (s+u)~( (2.1)
'M £2 g2 A S+uU 1
\GEAL) gy *

where o is the fraction of the momentum carried by the struck parton;
e? is the squared charge of the type i parton (a is the fine structure
constant); f .{z) is the probability to find a parton with rnomentum
fraction between x and x+dx, and finally, s,t,u are the Mandelstarn

variables.
The argument of the delta function in (2.1) may be written as:

- §(g? = ol s - 2
§[E + x(s+u)] 8{q* + 2Mv.xx) T Sz T ) (2.2)
where we have considered the values assumed by the Mandelstam variables
in the laboratory frame; Q= - qz is the squared four momentum trans-
ferred by the virtual photon and ¥ is the nucleon mass. Remembering that .
in this frame P.q = MV (P is the nucleon four momentum), the argument

of the delta function may be rewritten as:
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§(q? + 2Mv.x) = §[g® + 2mv.z + (@P)? - m%] = §[{xP + ¢)* - m?] (2.3)

where m is the parton mass.

Equation (2.3) exhibits the condition that the struck parton
remains ori its mass-shell after the interaction. With the aid of
equation (2.2) wemay conclude that the fractionx of the momentum P car-
ried by the parton, before it interacts with the virtual photon, isequal
to the Bjorken variable @%/2Mv. This shows explicitly that Bjorken
scaling intherelativistic framework gives information about the initial
momentum distribution of partons inside the hadron.

wti now show that the analogue of Bjorken scaling in the non-rela-
tivistic framework is y-scaling. This is derived, as before, by sup-
posing only the handbag diagram to be relevant for the scattering and
by imposing that the partons remain on their "non-relativisticmass-shell*
before and after being struck by the virtual photon.

In the non-relativistic framework, in the Born approximation,

the structure function is written as'?:

.. iq.m.
78 = ] |74, (@) [ 8(EE =) JXO <bpl Ir @e " Floe |76 (B, Eo-v)

(2.4)
where Lpo is the (initial) ground state wave-function and wf is the (fi-
nal) excited state wave-function to which the struck parton jumps after
interacting with the virtual photon. The delta function imposes energy
conservation (Eo’ Ef are the target initial and final energies); Fi(g)
is the constituent form factor which is equal to its charge in the
structureless case,

When we write equation (2.4) in momentum space we observe that
we need some knowledge about the potential. Supposing only that it
does not depend explicitly on the constituents' velocity, it is possi-
ble to find a general form for (2.4). Dueto the presence of the squared

modulus in (2.4) we will find some interference terms which will

>
not contribute in the 1imit of large @® if the space ground state
wavefunction is well behaved at the origin'?, Being so, in the Bjorken

limit, thtt structure function is reduced to:

241



+ (% +g)2-%2
toe) . q - .
gim W(v,q2) = gim J |F.(3%) |2 j dk. P.(k.) §v - —L 2
> >, . v -0 vt 2m
q >0 q 00 7,
(2.5)
with !’ dzki
Pk, ) = Lo f k. k)7 {(2.6)
Yoty ) (2m)°® Lot by

where ki and ki are the components of the constituents' three momenta

=
3

EN
along and perpendicular to the direction of the virtual photon, respec-

tively; the factor ifi(k ’kiz)!z is related to the squared modulus of

Ty
the ground state wave-function in momentum space, integrated over all

momenta, except kz'; m; is the Z-th constituent mass.

Applying to the argument of the delta function the definition

of the y-variab‘ies:

- 2mv - gz
2q

Yy (2.7)

we find

"
k. =76(y_ki ) (2.8)

Putting (2.8) into (2.5) and assuming that the constituents are

point-like, we have:

tim q(v,a%) = [ @ m; Ply) (2.9)
3P : |

It should be noticed that the same equation (2.5) would be ob-
tained had we considered only the non-relativistic analogue of the hand-
bag diagram as relevant for the scattering, together with the condition
that the parton should be on its "non-relativistic mass-shel1'™® before
and after interacting with the virtual photon.

By means of equation (2.8) we notice that the y-scaling variable
is the same as the component of the struck constituent initial momentum
along the direction of interaction. And, finally, by equations (2.6) and
(2.9) we see that the dependence of the structure function on the
scaling variable y is related to the initial momenta distributionof the
constituents inside the target, in close analogy with the relativistic

version of Bjorken scaling.
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3. WKB APPROXIMATION AND y- SCALING

V¢ now show that the structure function g¥, scaling irithe vari-
able Y , may be obtained as a Fourier transform in momentum space of
the ground state wave-function. As we shall see we get this result
simply by isolating that part of the excited state wave-function which
oscillates rapidly and by incorporating it into the factor equ-thenon
-relativistic electrornagnetic current.

For simplicity we restrict our analysis to the one-dimensional
case and look for the effects of the potential over just one of the
confined particles.

Being so, we consider a spinless confined particle with mass
and unit charge which interacts with the electromagnetic current,’jumpir;z;
fromthe (initial) ground state to an excited (final) state n. As we
have seen before, the structure function is written in terms of the
squared modulus of the transition amplitude |f0l according to (2.4). In
the special case of just one confined particle the transition amplitude

is written as:

400 .
= = * qu
Ifn = Ino = J dx l[)o(x) e l{,'n(x) . (3.1)

-0

As the Bjorken limit involves high excitations, i.e., the final

state level n is very high, the excited wave-function may be approxi-

rated semi-classically®:

r X
, C ki
b ) = ' }_ ' ] .
mES o sin Jb plz') A (3.2)
b 1/2
c= /M 5 T = [ 2 de ;3 plx) = er(E -V{z)) (3.3)
T(x) Ja plx) £ ]

where a and b are the classical turning points.

W assume that ¥, is effectively confined to a region -~c <z <e,
droppinp rapidly to zero outside this interval; c is a characteristic
number of the potential {could be, in some cases, the classical turning

. cl . .
points x = corresponding to the ground state level) and this is supposed
syrnmetric for simplicity.

W& now suppose that the potential parameter is small such that

the semi-~classical approximation can be applied and consider xzz» x%R
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(this approximation breaks down for the square well case). With these
hypotheses in mind we may expand the particle momentum, keepingonly the

first two terms:

pla) = (ZmE) A - = . S T (3.4)
n n

where V{x) is the maximum value of ¥V(x) in the interval =¢ < z < c.
Assuming that the excited level n is very high and that xfll»c
then V(x)//E—n << 1 in the interval -e¢ < & < c. Thereforewemay approxi-
mate p(x) by the first term of the right-hand sideof (3.4)'*.  With
this approximation, the excited state wave-function given in (3.2) may
be rewritten as:
x
wn(x) /% "1 sin}-{ fZ?n_EQndx'+%1
vimE | b

[}

T;E_’sinE/fm—E’; x+¢]; ¢=‘/27”-_E~nlb+%‘ (3.5)
( n

By energy conservation we write En—E0 =V ; assuming that En>>E’O,

then En =~ v. Substituting this and (3.5) into (3.1), we obtain:

+00 iqx , , . .
7o 2 [ dz U () e {;w ez%Zm\) _ e—ch 6-7,V2m\) ) (3.6)
"/ r@E, 0 2 |

When we take the Bjorken limit (g,v>®) the first term in brackets

in (3.6), multiplied by equ, oscillates rapidly giving a vanishing
contribution to the integral, according to the Riemann-Lebesgue Theorem.
But the second term, multiplied by eth, may contribute if g ~ VImv' .

This factor may be rewritten as:

q_@—\)ﬂ:_(i_~¢2m\))(q+/2_m—\?) o qz—Zm\)=_y (3.7)
(g +V2Zmv) 2g '

according to (2.7).
With the above considerations and the result (3.7), the modulus

of the overlapping integral (3.6) may be written as:

1 |+ -ty |
r | = —— {)( d p*(x) &Y | (3.8)
)

7ol RS

2T (oc)En

As we have said at the beginning of this section, the y-scaling

behaviour of the structure function g¥ may be obtained by the procedure
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adopted above, i.e., by isolating the rapidly oscillating terms coming
from the excited state wave-function and by incorporating them to the

qu. We see by (3.8) that the momentum variable is y. The y-

factor e
-scaling is reached in the form of a Fourier transform in momentum space
of the ground state wave-function, making the linkage of the ¥ variable
to the constituents' initial momentum distribution in the direction of
the virtual photon.

In order to make clear the correctness of the above procedure,
it is illustrative to analyse a particular potential for which the
above result, (3.8), is obtained whithout the WKB approximation.

The confining potential in case is the three-dimensional har-
rnonic—;-mw2 (x§+ x% + x%), where m is the mass of a spinless confined
particle which is supposed to have unit charge; w is the oscillator
proper frequency. The n-th energy level is given by E, = win + %) where

n =n; + n, + ny; the corresponding wave-function is given by:

5 3 3 -OLZxE/Z
v =01 ¢ (x.) =T ¢ e B (ax.) (3.9)
[P g=1 " % =1 " ny ot
where n -1/2
e _ 1/4 [ i,
o= vmw ; C = (mw/T) 2 "t (3.10)
n’i L 7

The structure function is obtained by means of the squared modu-
lus of Ij?0 (equation (3.1)) provided we sum over all possible final
states consistent with energy conservation. In terms of the wave-func-
tions given in (3.9) the transition amplitude will be given by the prod-

uct of thi-ee identical integrals of the form:

I =ccC fwdx o (az) "% g (o) =
no ne J_w n 0
>on -—-1/2 —>2 2
- @ S| T (3.11)
I[2 o2yt

The structure function may then be written as:

—_ >

n! 21,  2n, 21 e_qz/z(xz

i ! o T T L d Ayt o S, a3 2
n,7,7, 1772 g | nl2 o 2w

(3.12)
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Noticing that the above sum is a multinomial sum and including
the density of states factor dn/dEn. we get the following result for
4 Wo-
lqlw o m
l

G J L (3.13)

s |
lgiW = ——

The right-hand side of the above equation is a Poisson distri-

bution’. When we take the Bjorken limit, i.e., 6% >> 1 (and, canse-
v
quently, » = w >> 1) and use the Stirling approximation for ﬁJ,—\ this
2
distribution approachs a Gaussian one, with half-width 0 =V g /207
-

2 32
q 1 r 1 ) {%-%&?} —}

i ~ 5 X e exp " % =
L c 2 2
‘/27]'(32/2042) q /ZOL
Rearranging the argument of the exponential function into a

suitable form and remembering the definition of the y-variable given in
equation (2.7), we finally get:
qw - = expr-yz/OLZ:[ . (3.14)
w/'T L
The result (3.14) is equal (except for a factor 1/m) to the
squared modulus of the Fourier transform of the ground state wave-func-
tion, in terms of one of the momentum components - for example, along
the z-axis. This exhibits our earlier result (equation (3.8)) in a di-
rect way
It should be mentioned that the same result was obtained for
another particular potential by making use of a slightly different pro-
cedure. W have considered the linear one-dimensional confining poten-
tial (V(x) = @ for £ 0 and V() = ax for x > 0) and made a similar ,
but less dramatic hypothesis about the excited state wave-function. Once
more rnaking use of the fact that Bjorken limit involves highexcitations,
we have approximated the excited state wave function, intheoverllaping
integral (3.1), by its asymptotic form. In this way y-scaling was ob-

tained for gw.
4. NUMERICAL RESULTS COMPARING x- AND y- SCALING

In order to numerically study the approach to scaling in X- and
y-variables we analyse in this section two specific examples of confin-

ing potentials: the harmonic oscillator and the square well. W begin
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with the former, since some relations referring to this case have been
shown in the last section.

As we have seen, the structure function qW(\),Ez) is given by
equation (3.13) and we must look at the way itapproaches y-scaling. The
non-relativistic version of Bjorken scaling is obtained by looking at
the behaviour of the structure function VW(\),Z;Z) in the deep limit
g%, Ve, with @=%/2mv finite. Its dependence on v, g? is obtained

by the same procedure adopted previously to obtain ¢gW, and is written

as:
>2 72 2
= Yol /e (4.1)
wl |52
with n given byn:—z-%.

As commented in the Introduction, the structure function
\)W(\),gz) approaches a delta function in the variable x = EZ/ZM\), as we
take the Bjorken 1limit. With vW in the form given above, for only one
confined particle, we would observe the approximation to one branch of
the delta function when considering progressively higher energies and
momenta, since X varies in the interval 0 €£x < 1. For this reason it
would be better to consider the effect of the potential on two confined
particles instead of one. In doing this, however, as we want to observe
the approach to scaling, we should consider the interference terms ap-
pearing in the structure function (such terms come fromthe squared modu-
lus of the transition amplitude in (2.4)). However, as discussed in
section 2, as we take the Bjorken limit the contribution from these
terms drops out rapidly to zerolz, remaining only the individual contri-
butions. For this reason such interference terms will not be considered
from the beginning.

In order to exhibit the form used on numerical calculations we
write y, \)W(\),E;Z) and qW(\),c—;Z) in terms of the Bjorken variablexg =
= (32/21\4\)), where M = 2m

_ 22

y::@._cz_.:ﬂ (] -Zx) (“2)

2m q

7%/20% 3
_72 2 N ('L- -=)

W = 72/20? e q /20 (q® 2 : (4.3)

2x 7%/20% 3 o 20?

2 2
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q2/20(,2 > )[gzgiaz - %}
2 n 2
v = K e - (.4)
Y o20® (g%/20% 3], ‘20?
2z 2)‘ ’

The factor K1 = (Y2m/a) has not been considered in  numerical
calculations.

The approach to scaling is investigated by attributing progress-
ively higher values to 52/20c2, with x varying in the interval 0€ x €1
and by observing the behaviour of V¥ and g¥. The results for vWversus x

are shown in Fig. 2 and for gW versus y/a in Fig. 3

vwo qwloo
10°
10"
10'?
i0®

o] 0.5 L0 x -4.0 -2.0 0 2.0 4.0 yrx

Fig. 2 - The plot shows the Fig. 3 - The plot shows the structure
structure function VW versus, function gW versus y/o, for the har-

for the harmonic oscillator. monic oscillator. The curves have
The curves have been obtained been obtained for the followingvalues
for the following values of of g?/2a®: —— 10; — 50; --- 500.

q%/202:---10; —.—50; — 500.
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We clearly observe from Fig. 2 that the structure function V¥
approaches a sharp peak. By comparing figures 2 and 3 we may conclude
that y-scaling is reached more rapidly than the non-relativistic ana-
logue of Bjorken scaling, as would be expected.

Another numerical example may be considered. Now we supposethat

the confining potential is simulated by a one-dimensional square well:

(
{" bewca (.5)

© x<£0;x2a

V(x) =

By solving the Schrgdinger equation we obtain the following

wave-function for just one spinless particle with unit charge and mass

m:
4,0 = /Z sin[T ] (4.62)
and -
E - n ”2 (L.6b)
2na

is the energy of the n-th Tevel
Using the same procedure as before we find for the corresponding

overlapping integral, the form:

2 ( z(—qb nyn/o COS!(ﬁ—n)W/ZJ t(i+n)“/2 cos U—-OL n)Tr/Z_l
mom 1 (%D )2 Vo (@)
(4.7}

As we are supposing this level to be very high (= >> 1) and, for
the square well potential, very high levels are very near, we may sub-
stitute the sum in the structure function by a density of states factor.

Now, considering as before that we may analyse the effect of the
potential on two confined particles in the same way as in the one-par-

ticle case, we write the corresponding structure functions as:

t i _ s 3 2
- 252 {lcosl_z o, B)J cosEr (OL+B)2_] 1 h.8)
eg | 1 - (a-8)° 1 (oB)?
_ \2
av =k, 2 r°°s_7 (OL”S)Z] .l (Msih (4.9)
™ |1 - (a-B) 1 - (B) J
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+ 1 {4.10)
In the above relations we have applied energy conservationwhich

/ 27
N = CZZ ,—]-—+] .
it 2x
Lom

The constant X, = -~ Wwas not considered in nurnerical calcu-
n

>2
relates n to ¢ and X by:

lations.

Proceeding as before, we have attributed progressively higher
values to @ = aq/7, with x in the interval [O,l:l, obtaining the corre-
spondingvalues for VW, ¢g¥ and ay . The results are shown in figures b
and 5. in the latter, aiming at a better resolution, we have plottedthe
curves for gW versus ay only for ay < 10. For ay > 10 the curves pre-
sent oscillations with progressively lower peaks cornpared to the central
one (ar ay = 0).

By comparing figures 4 and 5 we observe that the same con-
clusions made in relation to figures2and 3 are valid: y-scaling is ap-

proached more rapidly than x-scaling.

5. CONCLUSIONS

In section 2 we have shown that y-scaling may be obtained by
the non-relativistic analogue of the handbag diagram supposing that the
struck parton rernains on its energy-shell before and after interacting
with the virtual photon. We have also shown that the y-scaling behaviour
of the structure function explicitly displays some dependence on the
initial momentum distribution of the constituents inside the target.
These results show that y-scaling is a more suitable non-relativistic
version of the well-known Bjorken scaling.

In section 3 we have shown a natural way of obtaining y-scaling
using the information that the Bjorken limit involves high excitations,
allowing us to approxirnate the excited state wave-functions by its
correspondent WKB function. As a result we obtain the y-scaling forrn of
the structure function as a Fourier transform in momentum space of the
ground state wave-function, in terms of the variable y. This result

stresses the fact that y-scaling gives us information on the initial
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1o 1c°
10'
10°
1o
10 . 5
0.2 0.4 0.6 0.8 * -10.0 -5.0 0 5.0 10,09Y

Fig. 4 - The plot shows the Fig. 5 - The same as Fig. 4 but for

structure function vi¥ versus h f . W
2 in the case of the infinite the structure function VW versus ay.

square well potential. The
curves have been obtained for

the following values of ag/m:
e 105 — 53; ---200.

momentum distribution of the constituents. W have also compared the
result obtained in the general case with that for the harrnonic oscil-
lator, for which no semi-classical approxirnation was needed.

Finally, in section 4 we have analysed the numericalapproach to
scaling fcr two specific examples. Based on both of them we can seethat

y-scaling is reached more rapidly than the non-relativistic version of

Bjorken scaling.
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Resumo

No artigo mostramos que, no contexto do espalhamento ndo rela-
tivistico por potencial, a varidvel de ''scaling' apropriada para a re-
gido profundamente inelastica ndo é a usual de Bjorken, xg = Q*/2M v ’
mas a variavel y =(mu-g%/2q. J

Mostramos também que o ''scaling' em y pode ser obtido de manei-
ra natural, fazendo uso da aproximacdo WKB. Apresentamos ainda resulta-
dos numéricos que permitem comparar a aproximagdo ao "scaling'™ em ter-
mosdexBj ey.
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