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Abstract The work of Montroll in deriving the propagator of time-depen-
dent harmonic oscillator is generalized to obtain the propagatoroftime
-dependent forced harrnonic oscillator.

1. INTRODUCTION

The path integral was first introduced by Wiener! for the cal-
culation of the mean values of certain functionalsover thetrajectories
of a Brownian particle, and was later extended by Feynman? to the
expression of the propagator, probability amplitude, in the configur-

3545

ation space of quantum mechanics The work¢ of Cameron and Martine,

Kac7, and Montroll® for calculating some Wiener integrals can easily be

9510511 However, to our

applied to evaluate related Feynman integrals
knowledge, the propagator of time-dependent forced harmonic oscillator
has never been derived with these approaches. The purpose of this paper
is to show that the work of Montroll can be generalized to obtain the

exact propagator of time-dependent forced harmonic oscillator.

2. METHOD

In the path integral approach to nonrelativistic quantum mech-

anics the propagator, probability amplitude for a particle to gofrom the
. > . 3 .
point (Xa. ta) to the point (xb,tb), can be expr'essed as
< (o]

K(*t~*t)—[ [ {-mftb =
Ty oty st ) = J exp{ (Z/ Lz,
) t
a

%,t)de} Dx(t) (2.1)

* Partially supported by CNPq.
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where 1(z,z,¢) is the Lagrangian and Dx(¢) is designed to indicate that
the integral is over all paths with fixed end points (Ea,ta) and (Eb,tb).
V¢ now assume that

L@%.¢) =5 2* - g w2 (£)z? +q(¢)z (2.2)

for one-dinensional tine-dependent forced harmonic oscil lator. By using
Feynman's definition? the propagator of one-dinensional tinme-dependent
forced harmonic oscillator is of the following form

Kz, b, 5@ ,8,) =

. . n/Z "00 * -2 n 2
= Lim {(m/2m7 <4T) .. exp{ (£T/2%) (mT by (xj-xj_l)
N> -00 -0 j=]
n-1 ) n-1
- I wixi+2 I g, . .
m L waJ + L quJ:H dzx,dz, s dxn_] (2.3)

For later convenience We have set T = (tb-ta)/n and I’j = r(ta+j‘[) for
any function r(t). If we let v = xj(m/zm) /2 tpen Eq.(2.3) can be
rewitten as

)-n/Z

(m/2#7) 2 exP[(iT/Zﬁ) mT_z(x;ﬂcz)

K(acb,tb;xa,ta) = Lim (£m .

N> 00 o
+ 202 - mwzx; { f ex [1 Ei](z - w2r?)y?
qo a o a J-co“. -0 pl Lz‘::] j yj
n-1 YR

- z Y. 2 Y. :
2 L Y+ 20/mA) jzl quJ} dy dy - dy,_|
(2.4)

Qur basic Gaussian integral for the investigation of a quadratic La-
grangian is

(oo}

J-m j . exp{i(yTAy + ZbTy) by ..dyn =

= G2 (det A) TP exp(-16TaT'p) . (2.5)

By comparing Eq. (2.4) and Ey. (2.5}, we find that the matrix A is of
the following form
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a; -1 0 0 0 0 0 0
-1 a, -1 0 0 o 0 0
0 -1 a, -l 0 0 0 0o
A= ' (2.6)
o0 0 0 . . -1 a g 0
! ¢ o0 0 0 . . 0 -1 app -l
ti o o 0 0 . . 0 0 -1 anl

with ai -2 - w;-Tz. The coiumn matrixb has the following elements

- 3/2
by = -y, + (T3/2m71)1/2q1=- cCT 1/zxa+ar/ a,
3/2

b, = (TS/th)l/zq.=aT/ q. J=2,3,...,n-2 (2.7)

J J J
and / ”

3 1/2 _ o /2
bn-] = -y, + (T°/2mh) Gy =’ Ty +aT Doy

1 -
with e = (m/2%) /2 and a = (2mh) vz From the matrix A we define A3‘ and

J a -1 3
| i 1
AI = ay, AZ = ]al _]‘ s A3 = -] a2 -1 R s An_, = det A,
ey 0 -1 a,
a -1 0
a, ., -1 | 1 n-3 i
- - D = |- -
D?’l— ! n-1’ n-2 I 1 an-‘ s n-3 1 an-z 1 i 3 y
0 -1 a,
Do = det 4 .

They satisfy the following finite-difference equations12

Aj = aJ. Aj"] -Aj_z and Dj = aj DJ"*'] - Dj+2 (2.8)

with respectively bouhdary conditions Ao =1 and Dn = 1. Futhermore, it
can easily be shown that

Ty ( )7 <n§] bD. )? (2.9)
A p= T (0D D, , 2.9
k=1 kk+1 F=k g g+l
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and k+1

Ak =D, Dy,y jzl (DJ. Dj_”

)7 (2.10)
when the matrix A is of form (2.6).

For g(t) = 0 (all q; = 0), the path integral (2.4), which stands for the
propagator of harmonic oscillator with time-dependent frequency, has
been calculated by Montroll with the help of Eq. (2.5) through Eq. (2.10).

In the next section we consider the case in which g(¢) # 0.

3. EXACT PROPAGATOR OF TIME-DEPENDENT FORCED HARMONIC OSCILLATOR

By using Eq. (2.6) and Egs. (2.7), Egq. (2.9) becomes

n-1
T -1 2.~1 2 2 -1
b'A"b = et {(DyDy)a; + (2/D))x x, + k=21 (0yDr0y)
n=l
- (2acTw /D)) =Z 405, - 29T, k=21 (04 P0))” ( Z ;05,1
"3 » nil : (3.1)
+ z (D ) a T ( CI ) ’ 3.
k=] K k41 j=k .7+l

after length but straightforward calculations. By substituting Eq. (3.1)
into Eq. (2.5), we then obtain from Eq. (2.4) that

K(zy, i, ) = (/2T det A) Y2 im expl(dm/2h0) [0 - D,/Dy)x?
1->co
2 nel -1 .
- (2/01)_xaxb + xb(l - kZ] (DkaH) )]} exp{'L[(Zacha/Dl) z qJ i1
}’lil . n=1
D.
+ ZacT:cb L (DkaH) ( jZk q‘7 J+l)
R i )27} (3.2)
) k kl jok J .7+I : :
=1

Here, the factor exp{€1/2%) (2q0x - mw? X ) in Eq. (2.4) has beenassumed
to be one in the limiting process as T"O (or noe ).
By converting Eq.(2.8) into differential equation, we find that
- 2 2 = - i
(DJ._H DJ. + DJ._])/T wi-1Dj

and in the limit as 1>0
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a’p(t)sdt® = - wX(e)D(t) , (3.3)

where t takes the place of ta + JT. The determinate 4(£) also would
satisfy the same differential equation. However, from the boundary con-
dition Dn=D(tb)

converge to functions A(%t) and D(t), respectively. Now, by introducing

=1 and 44 = A(ta) = 1, we see that Aj and 03- do not

two new functions f{(%) and g(%) as

= T. and g.= TA.
75 G 2N 9; J

then we have in the limit as T >0

d’f(e)sdat? + w3 (£)F(¢) =0 F(t) =0 and Flt) = - (3.4)

d’g(t)/dt” + W (£)g(8) = 0 g(£)) =0 and §(z,)

1, (3.5)

Futhermore, the following identities can easily be shown® as T>0

(1 = Do/D)/T= ~F(£ )/f(E) (3.6)
/0y = 1/£(¢)) (3.7)
and —
it-ni] (D.D )'IJ/T—U An-2/A T g
Lol B = (0 - An-2/4n-1)/7 = §(t,)/f(t) (3.8)

since det A= A(#)) = D(t,) = f(ta)/T = g(%,)/T. By substituting Egs.
(3.6), (3.7) and (3.8) into Eq. (3.2), we have

(m/2TiRf (t)) V2 ool (im/2f (¢ ) [F=27 (¢ )

K(xb,tb,xa ta) = n ]
- 2w Ty + xb —[} le exp{’uEZach /D1) pr ] q 741
n=l -
+ 2actz, kzl 0Pkt Z PN
. n-1 27y
- at ké] (Dk k+l b Z a; J+l) s (3.9)

With the help of Egs. (2.10) and (3.8), we obtain as T*0

t
n-1 b
v ] @)/, = ( zq wf o), = (75 [ gle)sle)ae

J=I J=1 ta

(3.10)
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1 (b

v T 0P, z a0 = (/5()) | q(@)g(@)a0 (3.11)
k=1 t,
and
: t )
7 . 7 8)g(6)dedd
1O (Jg ;050 = @A) [, Jtaq(e)f(e)q(.)g(

(3.12)

Eq.(3.11) and Eq. (3.12) have been shown in the Appendix A. Finally, by
substituting Egs. (3.10), (3.11) and (3.12) into Eq. (3.9), we have

K(z,, t,32 ) = (m/2MAf(2,)) Yz exp {(im/2hf (¢ ) Ex;}(ta)-?_xaxb +

b’ b’

+

t
23 (2,1} exp{(i/ﬁf(ta))EcaLb q(0)£(8)ds +
tb a
xbj q(8)g(0)d®

+

a tb S
am” [2 ], a@r@a@gaeanl . (3.13)

a
For time-dependent forced harmonic oscillator with constant frequency W,

-1

it can easily be shown (see Appendix B) that g(¢t) = w = sin w(t—ta) and
-1

f(t) =®  sin w(tb—t). Then Eg. (3.13) becomes

(mw/2min sin wr) '/’

K(xb ASEIN ) exp{{(Zmw/2% sin wr) E(x;+x2)cos wr

z
Zxaacz;[} expl(Z/% sin wF) Eca thq(e) sin w(¢, -8)do

b
+ a
+ T, J b q(0) sin w(e-ta)
ta tb re
- (1 /mw) j J q(e)q(d>)sinw(tb—e)sinw(tb-ta)dedtﬂ} (3.14)
t t
a a

with T = tb - ta.

Feynman and Hibbs obtain Eq.(3.14) by first showing that for

quadratic Lagrangian, the propagator can be expressed as

K(xb,tb;xa,ta) = F(t 't ) exp{z 5, sx Y/h} (3.15)

(b b’
and then by calculating the classical action Scl(acb,tb;xa,ta) and the

normalization constant F(t ,tb), respectively. However, we shall not
consider the case f(ta) = 0, which corresponds to the catastrophic

)13)110’

phenomena (or focal points in this work.
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4. CLASSICAL TRAJECTORY

From Eq. (2.2) the Lagrange's equation becomes

d?x(t)/dt? + w2 (B)x(t) = q(¢)/m, {&.1)

a nonhomogeneous second-order iinear differential equation (without the
first-order term). Before calculating the classical trajectory z(¢), we
would like first to study, the solution £(£) of Eq.{(3.4) and g(¢) of Eq.
(3.5). By calculating the Wronskian of £{¢) and g(£), we obtain'®

Wp®), g(e)] = g(t) = £(£)) #0

for all £. Therefore, they are two linearly independent solutions. Now,
by assuming that!®»17

g(t) = s(t) sinly(s) - Y(ta)] , 4.2)

where s{¢) and Y(¢) are the amplitude and the phase of a harmonic
oscillator with time-dependent real frequency. In order to satisfy its

boundary conditions, we must have

8- 5%2(t) twi(t)s = 0 (4.3)
and
s2(£)Y(t) = s(t ) . (4.4)

[24

Futhermore, we obtain from g(¢)

F&) = s(e) sinly(z,) - v@)] , (4.5)
which has been shown in the Appendix B. By substituting Eqs. (4.2),(43),
(4.4) and (4.5), we get

Kz, ,t

Yoty = V(e ) /amih rin ot )]

eXP{l:im\'((ta)/ZE sin® (¢, )] (2 + xf) cos o(ty,t )

- (é(ta)x; - é(tb)x;) sin @(¢,,t ) - 2 xaxb]}
- t
exp{{_iy(ta)/ﬁ sin ’b(tb,ta)] Eca Lb s(e)q(e)sinfb(tb,e)de

tb ) a
+ L 5(0)qg(0)sin @(e,ta)de
a
(p (° .
i [P [ a@s@a@asing(s,,0)sin00,e )doas])
t ‘'t a
a a

(4.6)
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Here, we have used the relations s(ta)‘.{(ta) = s(tb)Q(tb)=l, s(ta) =g( tg
and Y(t,) = Y(t,) and the notation ®(z,y) =y(x)-v(y) for any two vari-
aules x and y. For q{¢) = 0, Eq. (4.6) is equivalent to Eq. (27) of
Khandekar and Lawande!®. For time-dependent forced harmonic oscillator
with constant frequency w, Eq. (4.6) can be reduced to Eq. (3.14) since
Y(t) = wt and s(t) = w *

Since f(¢) and g(t) are two linearly independent solutions of

Eq. (4.1) with g(¢) = 0, then the classical trajectory can be written

asl®

_ Eq@) [Fe)g() - £lt)g(e)]

F6) = e, fl0) + e,g() + | a6 (1.7)
tq w[Fe), g(e)]

where ¢, and ¢, are two constants to be determined by the boundary con-

1 2
ditions () = x_ and z(¢;) = x,. With the help of Eas. (3.4), (3.5),
(4.2) and (4.5), we obtain

z(t) = [BV(g)/sin o(t,,8.)] {[z, sin o(¢,,?) + @, sin 6(¢,t,)]
P
+ B(ta)/y(t) sin @(tb,ta)] [sin o(t,,t) Jt s(6)q(8)sin o(6,t )do
rt a
- sin &(¢,t) J s(8)q(8)sin (¢t ,0)ds |} (4.8)
a ta b

after sirnplifications. Now, by calculating the classical action
(xb,t % t ) and the normalization F(ta,tb), we show that Eq. (3.13)

isof the form (3.15) as we expect.
APPENDIX A

By using Egs. (2.10) and (3.8), we find that

n=1 ( el {
T DD, )" D, . = DD, .)7?
kz_] Kk J.Ek G+ \Tn-1"n k | (PrPreay)
n-2 s
- -
4,50, kzl (D) + o+ gD, kzl )
+q,0,(00)"" }
= tla, ;0,4 ,/DD) +aq, 0 (@4 5/DD )
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+ ... + q,D,(4,/D,Dy) =1

<1
+ @D, (4,/0,0)} = (1) T T oasrg

=1 g
T>0 %
_ (I/f(ta)) f q(8)g(6)de . (A.1)
t
and “
] fl n! )2 3 2 2 nl 1
. = D -
T RZI Dy Dy (jZK ;w0 py)" = v a0y RZ] Ol + (2q, 10,
n-2 .
D
MR L k; (DPpert)
= ’ n-t .
* v (2 L4y P+ D) P k%, PPt
J=i =
n-2 -1
+ + (2 jz‘ qn_an_j+] + QIDZ(DIDZ) qlDZ }
_ (13 2
(r /Dl) {qn_‘D An 2t (an—IDn * qn—ZDn—l)qn—ZAn—3
n-1
+ + {2 j£2 qn-an-j+l + qlDz)q1Ao }
s n-1 ) n-=1
= (t%/p)) { jzl Ty * 24,40, j£2 Gy hio
n-1 n-1
2 A 2q.D A
+ 24y oD, jz3 -4 n-g-1 * MR jzn-Z qn-J n-g-1
*+2 qua(q1Ao)}
-1 nzl 2 n-1
= ()" i jZ] quf3+l€§—l * 2,05, jzz U-5"9n-g-1
n-1 n-l
+ Zan-Zfﬁ-l jz3 qn-jTgn-j-l e # Zqufu jzn—z qn-jTgn-j-l
t
g T-0 b 2
+ 21q,f,(q,19,)} —— (/f(z )){x q2(8)1(0)g(8)de
t
a
(tb (6
+ 2} q(e)f(e)deJ q($)gle)ds }
% ta
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tb [e
q(6)r(e)ds |
t

a a

- Grrs)) | TOHOLS (a.2)

t

APPENDIX B

Since f{(¢) and g(¢) are two linearly independent solutions of

Eq. (4.1) with g(¢) = 0, we then have*®

t
- . f -
ORNRCARICRIEIONS MK “(o)@e . (8.1)

By substituting Eq. (4.2) into Eq.(B.1), we obtain

£(t)

_ - (¢ _
Lq(tb)s(t) rin @(t,tau Jb {s(8) sin @(G,ta)} ? as
o6, )6 () sin 8(s,¢ )/o (5, )] LZ’ ((6)/5in20(6,_)1d8

o(z

) _
P 2/ (1-cos2¢1]dp (v(8)~y(z )= (6)

[s(¢)sin @(tb, ta)sin<1>(t,ta)]I¢(t)

= [s(2)sin o(ty,t )sin 0(s,2, )] [cot @(z,2)) - cot oty ¢ )]
= 5(t) ]:sin cb(tb,ta)cos @(t,ta) - cos cl)(tb,ta) sin @(t,ta ):]

= s(t) sin @(tb,t) . (8.2)
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RESUMO

0 trabalho de Montroll para deduzir o propagator do oscilador
harménico dependente de tempo & general izado para obter o propagator do
oscilador harmoénico forcado também dependente de tempo.
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