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Abstract Several statistical aspects of multistep compound processes
are discussed. The connection between the cross-section auto-correla-
tion function and the average number of maxima is emphasized. The res-
trictions imposed by the non-zero value of the energy step usedin mea-
suring the excitatlon function and the exger'lmental error are discus-
sed. Applications are made to the system 2°Mg(3He,p)27A%.

1. INTRODUCTION

In recent years the basic mechanism underlying nuclear reac-
tions have been profoundly reexamined in view of the increasing expe-
rimental evidence in support of new types of processes that lie, in

complexity, between the usual direct and compound ones.

The theoretical description of these processes is rendered
complicated as a result of their being more complicated than the sim-
ple direct processes, usually describable within DWBA or coupled chan-
nels theory, and yet less complicated than the usual compound proces-
ses normally accounted for by the statistical Hauser-Feshbach theory.
This necessarily implies that the description of these preequilibrium
processes rnust, somehow, contain both the statistical features, domi-
nant in conpound reactions, and some coherent effects (e.g. peaking in
the forward-angle region) that characterize direct processes.

One possible way of simplifying the theoretical descriptionof
preequilibrium reactions is to separate the average cross-section into
two well-defined and different pieces; one describing that part of the
processes which is forward peaked (called multistep direct part by the

MIT group’) and the other, symmetrical about 900, considered as a ge-
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neralized Hauser-Feshbach cross-section that describes what is called
precompound or multistep compound part. In particular, this last part
has been the subject of extensive theoretical discussion in the last
several years. Principally, three theories have been advanced!*273 the
common feature of which is their final result summarized as a genera-
lized Hauser-Feshbach expression for the aver‘age cross-section. This
expression is given as a sum of ¥ distinct terms related to the con-
tributions from the ¥ different classes of compound doorways resonan-
ces assumed populated in the process of the formation of the compound
nucleus. The system is allowed to decay to the open channels from any
of these stages. From the characteristics of these decay processes one
should be able to learn something about the nature of the compound nu-
cleus configura;cions through which the trapped incident flux percola-

tes.

In particular, in the Nested-Doorway Model (NDM} developed re-
cently In Ref. 3, a major role is given to the statistical fluctuations
around the average cross section {Ericson's fluctuations) in providing
the above mentioned information about the different QN stages. Through
a careful study of the cross-section auto-correlation function, it is
suggested that one may be able to extract at least several distinct

correlation widths attached to the different lifetimes of these stages.

Clearly, for these statistical analyses to be viable, one is
forced to restrict oneself to transitions leading to well-separated dis-
crete states of the residual nucleus. The excitation functions of these
transitions are expected to exhlbit clear statistical fluctuations, for
not too high incldent energies. As the incident energy is increased, the
discrete parts of the spectra of emltted particles become mostly direct
(forward-peaked) in nature. The multistep compound component would, in
this case, contribute mostly to the continuum region, accounting partly
for the emission of ''fast'' (non-evaporation) particles exhibiting 90°-

-symmetrlcal angular distributions.

Recently, several excitation functions for discrete transi-
tions of both light"— and heavys— ion induced reactions, have been sta-

tistically analysed, and consequently a very clear evidence has been
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established in support of the exlstence of more than one correlation
width. In these analyses, the generalized cross-sectlon autocorrelation
function of Ref. 3 has been used. Subsequent to these studies, it was

¢ that the number-of-maxima method (NMM) of Brink ans Ste-

suggested in
phen7 should be applied to the analysis of these excitation functions,
in conjunction with the auto-correlation method in order to check the
conslistency of results. Owing to the fact that the pre-compound excita-
tion functions analysed with NMM in Ref. 6 exhibit several correlation
widths, the treatment was necessarily crude. The importance of the abo-
ve double-checking of the results with NMM certainly calls for a more

precise theoretical discussion.

In the present paper we present the above discussion in the
form of a generalizatlon of the method of Bizzeti and Maur'enzing8 which
better serves the purpose of relating the average number of maxima in

the excitation function to the cross-section auto-correlation function.

For completeness, we present in Section 2, a brief summary of
the Nested-Doorway Model of precompound reactions. In Section 3, we pre-
sent a short account of the NMM of Brink and Stephen and the related
discussion of Ref. 8. The generallzation of the BM method to the mul-

tistep case and the numerical consequences are given in Section &, Fj-
nally, in Section 5 we present several concluding remarks.

2. A RESUME OF THE NESTED-DOORWAY MODEL OF PREGOMPOUND
PROCESSES

For a better understanding of the Nested-Doorway Model itwould
be worthwhile emphasizing again some of the points mentioned already in
the previous section. W show in Fig. 1 a typical spectrum of emitted
particles 'in a light ion induced reaction. This figure constitutes the
prototype one usually used1 to describe a nuclear reactions at not too
small energies. The preequilibrium portlon of the spectrum is seen to

be in the continuum region.

At somewhat smaller energies, the form of the spectrum, chan-

ges, as even the discrete part of the spectrum becomes compound-nucleus
. o . . . . .

dominated (90 -symmetrlcal angular distribution). A possible picture of

the spectrum at these lower energies is shown in Fig. 2. As is clearly
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Fig. 1 - A schematic plot showing a typical nuclear reactioii spectrum.
The individual peaks at the end of the spectrum represents direct tran-

sitions to discrete states In the residual nucleus. The broad bump in-

dicates the evaporation component.

Fig. 2 - A schematic plot showing the spectrum of emitted particles at
lower energies. The individual peaks represent compound transitions to
discrete states in the residual nucleus. The different components in

each peak represent the contributions from the different stages.
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Implied, individual peaks in the spectrum receive contributioris from the
decay of the compound system at the different stages through Which it

passes on fts way to equllibrium.

One would therefore expect that the average cross section for
a given transition from channel ¢ to channel c¢' Is (all formulae below

refer to the contribution of a given partial wave)

;ofz,>=20fg m
n

ce n,cc’
where n refers to three, five, etc. - excitons configurations. Such a
simple form for <c£§ ,> emerges fram all three theories of MSCP. In the
NDM, the individual terms in the sum of Eq. (1) come out all 1in the

Hauser-Feshbach form

2 _ (Pn_PnH)cc (Pn_Pn+l)c’e' (2)
n,ce'! _ )
’ Tr (Pn Pn+l)

where Pn refers to the transmission matrix defined with respect to an

averaged S-matrix, <S>I

n
absorption in the systern due to the coupling to doorway classes, n+l,

, constructed in such a way as to represent

n+2,..., etc.. W are, here, adopting the following convention for la-
beling the doorway classes: the complexity increases according to the
order: 1,2,3,...,N. Class N, therefore represents the equilibrated
compound nucleus configuration and thus is the longest-lived. The ener-
gy interval In is chosen in such a way as to encompass all classes
with average lifetimes larger than h/In (or, ‘equlvalently, with ave-
rage widths, T , smaller than In)' Expllcitly, P_ Is given by

n

P =1 - <85> <8> (3)
The total S-matt-ix is accordingly given by

hij
- ()
§z<s>_ 4+ 7§ sf (%)
In .

Since the final result for r‘lf'Q is obtained using an avera-
ging interval | larger than the widthsof all classes, we may write
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N
s=<s>_T + I sj:z (5)

1 n=]
where <S>1, is the optical S-matrix, obtained from an optical model
description of elastic scaterring. It was shown in Ref. 3b that the
multiple averaging <<"'<c£?cc'>rr‘z"'>I2>Il, needed to obtain the fi-

nal averaged fluctuation cross-section, does not change the structure
2 2
ofofn,cc" Eq.(2), ar long as the individual SZ in Eq. (4) (or Eq.(5))

are chosen in such a way as to average to zero, i.e.

<As«Z’%>In =0 (6)

Eq.(é) clearly shows, also, that <S£2 = 0, etc.. The

> =
Tyl

important first step used in ref. (3) to obtain the above result was a
generalization of the optical background representation method of Ka-

wai-McVoy and Kermang, which gives

9, . g o Gt a1
st =i ] Ihonbe (7)

’ i €n E-¢€,

ni
where 9,:. o are the usual form factors specifying the residues at, and
¢ , are the positions of, the poles in S due to the doorway resonan-

nt . .
ces of class n. The g by construction, are random variables with

ni,c ?

zero mean, 0. Egq. (6) is then satisfied automatically.

<g . >_. =
gnz,c I,

With the help of Egs. (6) and (7), the S-matrix autocorre-

latim function.

céi),(e) = <s£§f(E + €) sﬁ,(b’)ir1 (8)

may be easily evaluated to glve

N ™
(s) _ n £
Cor (8) —nzl 2T e (9
n

2 . . .
where O£ co! @re glven by Eq. (2). The cross-section auto- correlation

function, C’cc,(s), is then easily obtained from Eq. (9), neglecting
contributions from direct reactions (i.e., <S>I is considered diago-

. 1
nal in channel space)
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Py o
Lol —— (10)
n=] I‘n + 7¢g !

2

C () = !Cécs), (e)

In Egs. (9) and (10), T,,, denotes the correlation width associated
with the n~th class of overlapping doorway resonances. The gpove re-
sult for Cﬁcr(e) is a straightforward generalization of Ericson's ygq_

sult for the one-class case. For a more detailed discussion concerning

the derivation of Eq,(10) see refs. 3b and 3c.

Recently, several analyses"’5 of excitation functions, using
Eq. (10), have been reported. These analyses indicated clearly the pre-
sente of, at least, two distinct correlation widths. It should be
stressed that a clear verification of the multistep nature of the dis-
crete compound transitions of figure 2, referred to above, does not
necessarily require the presence of more than one correlation width in
the C{e) of each transition. It Is sufficient to find distinctly dif-
ferent correlation widths in CCC,(S) for different exit channels. This
is so since the nature of the final channel might be such as to indi-

cate strong coupling to a given class of doorways.

Ilhe above mentioned analyses are quite important for the un-
derstanding of the reaction mechanism involved. Recently, these stu-
dies were extended to heavy-ion induced cornpound reactions® and fu-
ston!?, The only feature of the statistical theory that is being tes-
ted in these analyses, has been the existence of several distinct'"life
-times". To develop a more stringent test of the theory, however, other
consistency checks, of the results obtalned in the above studies, are
required. One possible constraint would be a sum-rule involving the
correlation widths, suggested recently by one of us®"". This sum rule

states

—

21 § 5+ = Tr P, (1)

n n

e

where Dn is the average level spacing in class n, and P, is the opti-
cal transmission matrix. So far it has been difficult to put Eq. (11)
into use, due to the fact that not all the I‘n,s are extracted experi-

mentally.
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Another, potentially important, test Is the number maxima
method, developed originally for the one-class case, by Brink and Ste-
phen’. This theory supplies the following relation between the average
number, n, of maxima in the excitation function per unit energy, and

the correlation width, T,

p=22 (12)

Eq. (12) has been extensively used in the past, in conjunctionwith the
auto-correlation method. Recently® a generalization of Eq. (12) to the

multi-class case has been made. In this case, the NMM does not supply
another mean of obtaining the T S but, rather, it may be used to

check the values of the extracted T 'S and of ,5. However, as already
recognized in the past by several authprs, several important  correc-
tions have to be made, before a confrontation of Eq. (12) with the da-
ta is attempted, These corrections are primarily related to the finite

size of the energy step and the nonzero value of the error bar.

In Ref, (6) some of the above mentioned corrections were in-
troduced into the generalized BS relation. However, it was realized®
that the correction related to the error bar could, aimost, be accoun-
ted for only approximately within the BS method. Although the theore-
tical values of n obtained in Ref. (6) for the reaction *3Mg{’He,p)?’A%
studied recently by Bonetti et al., came out close to the experimental
5, a better account for the above mentioned corrections is called for
in view of their important effect in reducing the number of maxima %o
be counted as real maxima. In the following section, we present a more

refined treatment of these corrections,

3. AVERAGE NUMBER OF MAXIMA IN THE EXCITATION FUNCTIONS FOR
PRE-COMPOUD PROCESSES

in this section we generalize the method developed by Biz-
zetti and Maurezing® for the calculation of n. This method is better
suited for dliscussing the correctlion referred to in the previous sec-
tion. In the BS method the real and imaginary parts of the fluctuation

S-matrix are taken to be random variables. Here we take the fluctua-
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tion cross section, ofz calculated at three energies, E, E+g,andE-E,,
to be the three basic random variables. The joint probability distri-
bution of these cross section is taken to be Gaussian. Such a procedu-

re is valid when many channel are opened.

The condition that at energy E the cross section attains a

maximum value is

o (E) > THE £ ) (13)

where for the moment we have ignored the-effect of the non-zero Vvalue
of the error bar. The average number of maxima per unit energy inter-
val, N, is then given by'?

© a g

2 1
dczf dcrf do, Flo,,0,,0,) (14)

-00 -0

= _2
n ==
€

-
where o, = oﬂ(E), g, = Oﬂ(E+€O), g, = oﬂ(E-eo), with 0,>0,>0, (for
which reason the appearance of the factor 2) and F(0,,0,,0,) is t(heir

joint probability distribution given by

F(0,,0,,0,) = (ZTT)-3/2 pY/? exp[- -;— xTA.;I (15)

0,

where X = [OZI and D = det C, C belng the correlation matrix, whose %J

2

matrix element is given by (see Eg. (10))

| L |2
] ——— (16)

The matrix 4 is just ct.
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The triple Gaussian integral, Eg. (14) is easily evaluated

to give

_ 1 -1 c(0) - Cle,)
n = —— tan o -] (17)
TE, c({o) - C(Zeo)

The C(e ), etc. is given by Eq. (10).

Equation (17), in the limit of zero energy step size and one

class case, reduces to

n = —O—FS—S (18)
which is BS relation valid for the large number of channels case. Eqg.
(17), though valid for rmany classes and contains the effect of finite
energy step (60#0), stjll suffers from the absence of any inforrnation
concerning the nonzero value of the error bar. To remedy this we have
to rnodify the basic condition for having a maximum in the cross-sec-

tion, Eq. (3). Thus we require for the rnaximum the following
o(E) > o(E + g,) +v /7(0) (19)
where V(g) is the variance of the cross section
(o) = <o?> - <g>? (20)
Equation (20) guarantees that only the ‘maxima' defined within the er-

ror bar (accounted for by the parameter v>0) are to be counted. Let us

now introduce the following parameters

o(Bre,) = <o> + VV(0) x,
o(E) = <o> + /(o) =, (21)
U(E-eo) = <o> + vV(o) =,
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The average number of real maxima per unit energy is then given by
B [
n= —82—0 tdx,  dx, des Flx,,x,,x,) (22)

~1//R(0) -1/VR(0)y -1/VR(0)

where

2]

R(0) = v(o) / <o>?

For the Gaussian descriptlon of F to be valid, R(0) << 1. Thus we ex-
tend 1imits in the integrals above to -«, The joint distribution func-
tion F(xl,xz,xa) is just as in Eq. (15). Making the following change
in variables

T, =Y x1=y-psine,x3=y-pcose

and calling tan 8 =t, we obtain, after integrating over y, the follo-
wing integral form for »
1

C.+2C t+C t2~
5 oot b j B Mt i L (23)
mey VDM o C 420, t+C,8? t 2

where D is the determinant of the correlation matrix C and is given by

D= (1 - c?(g,)) + ¢*(e,) [c(2e,)-1]

(24)
+ C(2ey) [0 (e4)-C(2¢ )]
and
M = 2(1-c(2e)) + (1-c*(2¢,)) + bc(e)) C(Zeo)—]:l (25)
-1 [ (1-cle)) 2. (1-c(2e ) ®
c, =0 J0-c*(ey)) - T (26)
( 1-c(e,)) 2. (1-c(2e,)) 2

¢, = nete, : (27)

o} i(cZ(eo>-c<zeo>> -
DM
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in all of the above equations C(x) is given by Eq. (10), namely

N o T 2
clx) = Z U (A
n=1 1+ 7 —I,‘E—
n

Clearly in the limit y=0, we recover the error-bar uncorrected Eq. (17).

The integral in Eq. (23) cannot be evaluated in closed form.

V¢ have calculated 7 through numerical integration.

Equations (23)-(27) with ¢(x) given by Egq. (10) constitute the
principal results of this sectlon. They show clearly the way the mul-
tistep aspect of the excitation function, as exemplified through the
generalized cross-section auto-correlation function C{z) of Eq. (10),
enters in the determlnation of the average number of maxima, subject
to the usual experimental restructions of having to deal with a finite
energy step size, €4, and a non-zero error bar, y. The zero step-size
limlt {€,=0) and perfect measurement (y=0) is easily obtained by ta-

king the appropriate Ilmit In Eq. (17). Considering a two-class case

we obtain

- V3

=2 W0,,0,,1,,T,) (28)
where
N(Ul)021111’r2) =

4 4 2.-2 2 2.1 2
S LY WP R S s S D s LS i i By

2 2 2 2 “in-1 -2 =2
o2 /1% & o2/T3 - 200,[F'T, -T]" -T,7]

(29)
with
o, = At v N o, = ofF (e oTh

Egs. (28) and (29) are a simple generalization of the BS formula for

the two-doorway-class case valid when the number of channels is large

154



(the numerical factor ¥3/mw is just 0.55, see Eq. (18)°. Actuallt by
setting either o or q equal to zero, in Eq. (29), we recover Eq.
1

L it g,=0).

(18) for the one-class case (le. N~ < if 0,=0 or ¥ » T,

Ty

Close inspection of the function N(OI,OZ,I’I,I‘Z) shows that its
value for a given 9, and a lles between 1/T; and 1/T',. Using our

convention in ordering the doorway classes, we have
-1 ~1
r <v(o,,0,,l,,T,) < T, (30)

The above inequality clearly indicates that the average number of ma-
xima to be expected in an excitation function, is generally smaller
than the number predicted by BS for the equilibrated one-class situa-
tion (only T,) and larger than the number associated with the simple
doorway class alone (only I’,). This Is quite reasonable since the pre-
sente of overlapping-doorway modulation on top of fine structure (FS)
fluctuations in o(E) will make some of the FS maxima practically di-

sappear .

Let us turn now to the effect of €, and y. Both the non-zero
value of £, and ¥ result in a reduction in the value of n. As E, in-
creases in value E, = 1"2) some FS maxima start disappearing and even-
tually when g, reaches the value T,, one starts countingbasicallythe
doorway-generated maxima only. In so far as the non-zero value of the
error bar (y) is concerned, the resulting reduction in =»n is quite
easy to understand. The larger the error bar in the data, the larger
would be the uncertainty in the nature of the peaks in the excitation
function and accordingly the smaller the number of the real maxima to
be expected. This feature is quite clearly seen in the formula for 7,
Eq. (23).

Te exhlbit the dependence of #n on the several physical quan-
tities that specify the multistep nature of the reaction, i.e. a, a,
Og5.+4,0,0,,T;, ..., we consider below the specific case of the reac-
tion 2°Mg(®He,p)27AL, studied recently by Bonetti et ql.*. Theseauthors
analysed several excitation functlons for transition to discrete sta-
tes in 27A%, and found that in all cases two correlation widths seem
to be present: a larger one, TI', = 200 keV, attached to a simple, five-
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exciton, configuration, and a smaller one, T, = 50 keV, associated with

the life-time of the equilibrated compound nucleus 28gj .

The average number of maxima according to Egq. (23) was cal-
culated as a function of €9 and ¥ and for different combinations of &

and o, Our results are summarized in Figures 3-6.

Y v A Y 10°

10-

0.00 .00 2.00 3.00 4,00 5.00
Y no-!

Fig, 3 - The correction factor associated with the finite size of the
error bar, for the combination g, = 0.75, g, = 0.25, I‘1 = 100 keV and

1‘2 = 50 keV. The full curve corresponds to g = 200 keV, dotted one,

g€, = 150 keV, dashed-dotted, g = 100 keV, dashed, E =75 keV and
dashed-dotted-dotted, g = 50 keV., The corresponding values of
ﬁ(y=0,60)AE, (Eq. 17)) are 41, 29, 23, 15 and 12 respectively. The

error bar corrected n is obtained by multiplying n(y=0,e )AE by the
appropriate value of d, plotted in the figure as a function of vy

(see text for more details).
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10!

.00 l;é)O 2.00 3.00 I 4.00 5.00
° Y /107!
Fig. 4 - Same as the previous figure for the combination g = 0.25,
o, = 0.75, T, = 200 keV and | =50 keV. The value of n{y=0,e,)AE, is
45, 32, 25, 17 and 13 for €, = 50 keV, 75 keV, 100 keV, 150 kev  and
200 keV, rsspectively.
10°
4p
107
A . 3 N 10~
0.00 1.00 2.00 3.00 4.00 5.00
Y 710
Fig. 5 - Same as the previous figure for the combination a, = 1.0,

a =00, T, =200 keV, and T, = 50 keV. The value of n(y=0,e,) AE,
is 20, 18, 17, 14 and 11, for £ = 50 keV, 75 keV, 100 keV, 150 keV
and 200 keV, respectively.
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10°

10°!

0.00 LOO . 2.00 3.0?0 4.00 5.00
. !

Y -

Fig. 6 - Same as the previous figure for the combination a, = 0.0,
a =10, T, =200 keV and T, = 50 keV. The value of r_z(Y:0,eo)AE’,
is 45, 33, 26, 17 and 13 for g, =50 keV, 75 keV, 100 keV, 150

keV and 200 keV, respectively.

To better appreciate the effect of includind the error bar
in the calculation of ﬁ, we present our result in the figures in the
form of a factor defined as d(y,e ) = n(y#0,e,)/n(y=0,e,), which when
multiplies 7 glven by Eq. (17), namely n(y=0,e,), supplies the desired
result. As is clear from the results, d(y,eo) depends strongly ©on y
and mildly on E  for most of the different cases studied. The only
case where the E - dependence of d(y,eo) is very strong is the one-
-class case associated with the doorway resonances (01=I.0, a =0,0 ,
Fig.5) when vy is taken to be large (0.5). Although E(y=0,eo) always
decreases with increasing E the correctlon factor d(y,eo) tends to
increase with g, the correctlon factor d(Y,eo) tends to increase with
€,, for a glven value of y (see, e.g., Fig. 3, d{(y=0.5, €,=50) = 0.2,
d(y=0.5, £,=200) = 0.47). Clearly this trend in d, depends on the na-
ture of the correlation function. As long as there are fine structure
fluctuations (02#0), the increase in d with g, is very mild even for
large values of y* {(Fig. 3,4 and 6). Once the fine structure fluctua-
tions are removed, then the increase of d with €,5 In the region £,5h

is seen to be quite drastic especially for large values of y. For the
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case shown in Fig. 5 (cl=l.0, o, =0.0), d(y=0.5, ¢,=50) = 5x10 ° and

d(y=0.5, 5(,=200) = 0.43, i.e. a change of several orders of magnitude.

In cases where d(Y,eo) changes slowly with g it would be

natural to seek a form for # that contains the €,- and y-corrections

as multiplicative factors, in the sense

- K:: W(o,0,3T5,T,) d, (€,)d, () (31)
where, though not indicated in Eq. (31), both d, and d, should depend
on 0,, 0,, I'y and I'y, and N is the function defined in Eq. (29). Apos-
sible way of contracting d,(y) is to define an average of d(vy,E)
over several value of g, (i.e. the average curve in Figs. 1, 2 and
4). The functlon d,(e,) is just Eq. (17) divided by Eq. (28). Further
work on the validity of the approximation implied by the form of n
given in Eq, (31), is required.

4. DISCUSSION AND CONCLUSIONS

In this paper we have discussed several statistical aspectsof
multi-step compound processes. In particular we have considered the in-
terconnection between the number of maximum method, appropriately ge-
neralized to the multistep case, and the cross-section auto- correla-
tion functlon recently dlscussed in connection wilth pre-equilibrium

reactions.

It is emphasized that any realistic application of the number
-of-maxima methods must unvoidably consider the limitations imposed by

the non-zero value of the energy step size and the error bar. Both of

these effects result in a reduction in the average number of maxima.

Our results should be quite useful insupplyingadouble check,
through the comparison of n with experiment, of the results of the
generalized Erilcson analysis of multistep excitation functions.
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RESUMO

Varios aspectos estatisticos de processos compostos de malti-
plas etapas sdo discutidos. A relagdo entre a funcdo de auto-correla-
¢ao da secao de choque e o nimero médio de maximos € ressaltada. As
restricdes impostas pelo valor ndo nulo no passo da energia, usado na
medida da funcdo de excitagdo ¢ o erro exeerlmental sdo discutidas. Sao
teitas aplicagoes ao sistema 25Mg (*He,p)?
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