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Abstract A formal mathematical background is developed in such a way that
it determines the necessary conditions that a cluster must satisfy to
reproduce accurately the main features of the band structure of an in-
finite crystal. It has been shown that if such conditions are satisfied
the cluster energy band structure is a true image of the crystal one. It
has been also shown that the larger the band gaps in the crystal, the
smaller is the cluster needed to represent its band structure.

1. INTRODUCTION

Small clusters of atoms have been used to reproduce the elec-
tronic band structure of infinite crystals. As it has been made clear
by Kadura and Kunne!, in some instances, the reduction of an infinite
crystal to a few atoms does not preserve the main features of the band
structure. For instance, in the case of metals, these authors showed
that clusters with more than 100 atoms are needed to reproduce the crys-
tal band structure. Thus, we first address ourselves to the question of
the validity of a cluster calculation.

When a cluster band structure calculation is performed, one ex-
pects that the energy bands of the cluster are a good image ofthe bands
of the infinite crystal, in other words, one expects that the cluster
preserves those features of the crystal bands that have a strong local
character arid result from short range interactions. For instance, we
cannot expect that a cluster calculation gives the location of the band
maxima and minima in the Brillouin zone, but we can expect it to give
the correct charge density and a pagsable energy dencity of states. In
most cluster calculations we have seen, one avoids answering the impor-
tant questions of what are the infinite crystal features preserved by

the cluster and how is one to proceed to preserve them. It is frequent,
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for instance, that a cluster calculation gives an energy spectrum which
is a mixture of bulk and surface states®. In our mind, an exception is
the work by Brescansin and Ferreira®. In their self-consistent calcula~
tion of NaCZ, in spite of the Schr‘o'dinger equation being solved in the
cluster, they try to preserve the crystal features by solving the
Poisson equation in the infinite crystal. Without repeating their intui-
tive argurnents here, we intend to show that the Brescansin and Ferreira
procedure has a firrn theoretical basis, and, in this process, we make
clear what are the preserved infinite crystal features. For instance,we
conclude that metals cannot be calculated but with very large clusters,
and that, for insulators, the cluster bandwidths are narrower thanthose

of the crystal and the cluster gaps are larger.

As long as it has been well tested, a cluster calculation is a
fast method of electronic band structure determination and, when it is
reliable, a cluster calculation has many advantages. For instance, the
calculation of deep defect levels is simple if one uses a cluster?®, but
it becornes very difficult when the whole infinite, crystal is used.
Beyond this fact, a cluster calculation becomes specially simple and
fast within the framework of the multiple-scattering method®. This is
a precise method as long as the effects of the muffin-tin potential are
small, in other words, as long as the cluster is dense. Thus, a muffin-
-tin cluster calculation must test for the importance of the potential

errors and for the importance of the cluster size effects.
2. A JUSTIFICATION OF THE CLUSTER MODEL OF A CRYSTAL

A self-consistent field calculation requires the simultaneous
sclution of two differential equations: the SChrgdinger equation, sol-
veo for each electron, and the Poisson equation. In the Brescansin and
Ferreira procedure, the Poisson equation is solved in the infinite
crystal, using the charge densities of the inner atoms of the cluster
as representative charge densities in the crystal. tnthemultipie-scat-
tering method these charge densities are in the muffin-tin format and
the solution of the Poisson equation in the infinite crystal presentsno
special difficulty. The muffin-tin potential, thus obtained, is used in
the Schrgdinger equation for the cluster, but one has to surround the

cluster atoms by a potential barrier in suchawayasto confine the elec-
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trons in the region where the potential is well defined. The advantages
of this procedure have been stressed by Brescansin and Ferreira an will
not be repesated here. While they present an intuitive justification of
their procedure, we are giving a formal and exact mathematical justifi-
cation, which has the advantage of exhibiting clearly the Ilimitations

of the cluster method.

Cluster calculations following very different procedures have
been presented in the literature. Most of them are very .difficult to
justify and as far as we know, this is the first time a justification

is presentad which goes beyond the purely intuitive arguments.

W% begin our discussion of the Brescansin and Ferreira muffin-

-tin cluster method by studyi'ng the following one-electron Hamiltonian

A= +47 P (1)
0 - n |I%>Ro n,z

where fio is the Hamiltonian for an electron in the infinite crystal and
A is a large and positive number. The sum in n is a sum over the bands
of the infinite crystal, while the sum in R is a sum over the lattice
vectors whose moduli are larger than the radius R . Finally, ?n,z is a
projection operator that projects into the state of the Wannierfunction
of band »n centered at site ﬁ In the coordinate representation, one

writes

B3v®) = [ aF o G-Da - DTGy (2)

where an(T‘ - ﬁ) are the Wannier functions.

The definition of a Wannier function is not unique because it
depends on the phases attributed to the Bloch functions in the whole
Brillouin zone. In what follows, it will be convenient to define the
Wannier functions so that they have minimal widths Wn defined asfollows

W; = J a3z an(;)* r? an(;) (3)

The problern of defining these minimal Wannier functions has been solved

by Ferreira and parada®, and one can construct the projection opera-
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tors Pn.j,: in Eq. (1) according to their prescriptions. In the case of
overlapping bands we can do even better. Lonsider, for instance, the
case of the C& 3p bands in NaC%. In this case, there are three bands
overlapping in energy and that are degenerated at symmetry points in
the Brillouin zone. Instead of defining a Wannier function for eachband,

we couldcombine the Bloch functions of the three bands as

> Ty L 1 3—> "’L'z.z >

0,6 - 1) = — J A’k e y Um(i) bm(i,y«) (4)
9] m

where @ is the volume of the Brillouin zone, bm(z,;) are the Bloch func-

tions corresponding to such bands and Unm is a k-dependent unitary ma-

trix. The new Wannier functions obey the required orthonorrnality rela=

tions
J @Fa,@ - D*a, G -1 =8, 0 8 g (5)

and the unitary matrix Um(z) might be chosen so that the Wannier func-

tions of Eq. (4) had minimal widths. In the case of the three ®R 3p
bands, since the Bloch functions are primarily made out of atomic (% 3p
functions, the minimal Wannier functions defined in Eq. (4) would have
widths at most equal to the width of the atomic functions. Thus, in what
follows We shall keep in mind that one is able to construct Wannier func-
tions with widths of the order of an atomic radius. These Wannier func-
tions are those ysed in the definition of the projection operators of Eq.
(1).

The effect of the second term in Eq. (1) is simple to unders-
tand: this term raises the energy of the electron if it ventures outside
the sphere of radius R,. Now, suppose we find the eigenfunctions and

eigenvalues of Eg. (1). Since the Hamiltonian commutes with the projec-

tion operator of the bands

where
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each eigenstate of H is a cornbination of the Bloch states of a single

band. Working in the Wannier representation, the secular matrix of the
Hamiltodian H of Eq. (1) assumes the following form
<Tla 0> <t [ ]2
L
-~ ]
= : (6)
E<II|IH0 |1|n>
<t g, | T s
+
Il A 6;..’3...
Thls matrix breaks into the following four submatrices: the upper- |gft

diagonal submatrix refers to the internal Wannier function states, name-
Ty

21, ('] <&,

the lower-right diagonal submatrix refers to the external Wannier func-

tions, or

Iinl’ IIIHI > RO y

while the off-diagonal matrices mix the external with the internal Wan-
nier function states. If A is sufficiently large (later on it will be-
come clear how large it must be) the determinantal equation of the ma-

trix of Eq. (6) can be solved by perturbation theory. Setting

=70 .7

where
<T | H | B> 0
~(0) _ i
B o= +
E<§nl Ho lilll>
0 !
i H S5 Fa
we obtain
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The eigenvalues of 5(0) (not to be confused with Ho) are the discrete
eigenvalues of the upper-left submatrix and the continuous eigenvalues

of the infinite lower-right submatrix.

In figure 1 we show the spectra of the eigenvalues of ﬁo and

ﬁ(o). Each band of ﬁo is broken into a higher continous band, displaced
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Fig. 1 - Energy eigenvalue spectrurn of the cluster Hamiltonian as com=-

pared to the crystal Hamiltonian spectrum.
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from the original band by A, and a set of discrete states with ener -
gies between the highest and lowest energies of the original bands. The
effect of the perturbation of ¥ is negligible if A is large. Indeed,
from second- order perturbation expansion, one knows that ¥ displaces

the discrete eigenvalues of ﬁ(o) by

| <T | B [ B>

A

Now, the off-diagonal matrix elements of ﬁo have the order of magnitude
of the bandwidth E. Thus, if A is much larger than the bandwidth, the per-

turbation of ¥ can be neglected and the eigenvalues of § will coincide

with thoseof I:i 0).

In any cluster calculation we are interested in the discrete
spectra made out of the continuous states of the band. According to the
preceding argument, if the cluster calculation is made with the Hamil-
tonian of Eq. (1), and as long as A is much larger than the bandwidth,
the discrete states are exact combinations of the internal Wannier func-

tions of a single band, that is

0
vO@ < T o o G- D) 7)
|T1<r
0
The Wannier functions themselves are combinations of the

Bloch eigenfunctions. Thus,the highest discrete state corresponding to
a band has a lower energy than the top of the band, and the lowest dis-
crete state is higher than the band minimum. Thus, it can be concluded
that, in Figure 1 for instance, the bandwidth B' determined by the clus-
ter is smaller than the true bandwidth B, while the gap separating con-
secutive bands, G', is larger thanG. On the other hand, if the cluster
size is increased, by including more atoms in the calculation, the band-

widthscan only increase and the gaps decrease.

What distinguishes the Brescansin and Ferreira self-consistent

cluster calculation from other cluster procedures is their treatment of
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the Poisson equation. In the usual molecular cluster calculations the
discrete states of the cluster are populated with electrons and the re-
sulting charge density is used to solve the Poisson equation for the
cluster. On the other hand, in the Brescansin and Ferreira procedurethe
discrete states are populated, the charge density of the inner atoms fis
repeated in an infinite net, and such a periodic charge density is used

to solve the Poisson equation in this Znfinite crystal.

The Coulomb interaction being of long range, the potential
generated in molecular cluster procedures may have strong surface con-
tributlons and may be heavily dependent on the size of the cluster. Then
the cluster energy spectrum is only a true image of the crystal spec-
trum if it can be proved that the resulting surface effects are small.
This proof is usually absent in the cluster calculations. On the other
hand, in the Brescansin and Ferreira procedure, there are no surface
effects because the Poisson equation is solved in the infinite crystal,
but one must prove that the charge density of the inner atoms of the
cluster is truly equal to the charge density of the atoms in the crys-

tal. Thus, we now address ourselves to this point.

Populating qll discrete cluster states of a band is equiva-

lente to generating an electronic density given by

o = 1 o G-D)|? (8)
cluster > “n
|2<R,
When compared to the crystal density
= > 2
pcrystal - _2; ’an(l7 I)l (9)

Eq. (8) leaves out from the inner atoms the contributions due to the ex-
ternal Wannier functions an(; - %) with [?[>Rn. If the Wannier functions
have small enough widths (Eq. (3)), the contribution left out is very
small. As argued before, for the minimal Wannier functions defined in
Eq. (4), the width has the order of an atomic radius and thus it is not
difficult to make the cluster density of charge coincident with thetrue
crystal density at the inner atoms. Further, as it has been showed by

Ferreira and parada7, the width of a Wannier function of a band increa-
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ses as the energy gaps separating the band from the others decreases.
Thus, for a precise charge density at the inner atoms, larger cluster
are needed for the smaller gap insulators or semiconductors for the sim-

ple reason that the left-out terms in Eq. (8) have longer range.

The preceding paragraph omits a reference to the case of me-
tals because, for their half-filled bands, the electronic density s
not given by Eq. (9) and, if we were to populate fractionally the dis-
crete states of the cluster, the electronic density would not be given
by Eq. (8). Thus, for a metal, a cluster has no true justifications. As
we see it, a metal is a system where the interactions are of very long

range and cannot be understood by means of smail clusters of atoms.

As a final point, one notices that the Hamiltonian of Eq. (1)
is totally impractical. In order to define A, one needs to know the
Wannier functions, but that is the knowledge we do not have at the be-
ginning of the calculation. In the Brescansin and Ferreira procedure,
ones uses instead the following Harniltonian

A" =Hy+ 40(r - Ry). (10)

So we must compare the second terms in Eq. (10) and (1).

In the Wannier representation the secular matrix of g s
given by
<7 | 170 ] $rs
< 1 | ﬁ,\ I Inr >
R +4 <% | O(r—Ro))I"'>
+4<t jole -r)|T>

<In|ﬁolzr> <znlﬁolznl>

A<t le@-R)E > | +a<¥" o - R T >

iy
[}

()
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As in the case of Hamiltonian ﬁ, one may rewrite Eq. (11) as

o= A9 4 o (12)

where
l <7£ ’ﬁo Iznl>
4 <t jot-r)| T > !
: :+A<f]@(r’—R0)]z"'>
v o= —_ — —— e e (13)

>

C<dra, | R a<¥ jo-r)] T
|

~-48

>
’
+4<ErolR) L > i

|

Then, up to second order perturbation theory, one has that the secular

matrix elements for the discrete states of H are given by:

+;7 R AL A AR

!EII;>R0

+ 4 <d)o(x-ry) |T1>

+ 4 % Flo@-r,) [T><dnjo»=r,) [E> (14)
[2"]>R, .

+ ) {<1]ﬁolz“><?i“}e(r—1?0)]?Z'>
[1“]>Ro

+ <I[O(r—Ro) |1”><7£“[f?0 [£153

The first two terms in Eq. (14) are the same as have been for Hamilto-
nian Z and assure that if A is much larger than the bandwidth, the

corresponding perturbation is negligible.
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Letting C be the maximum eigenvalue of the matrix
<% lot - Ry | s

>
where both R and I' are Wannier functions inside the sphere R, the

third terni becomes negligible if A is chosen so that
AC << B (15)
where B is the bandwidth. For the fourth term we write

Max Eigenvalue { } <EIO(P—RQ)|§:"><E”|O(P—Ro)]z'> } o<
lz“[>Ro

< Max Eigenvalue ] <3L>[O(r—Ro)[Z“><7L>”[O(r-—1?o)]z'>
all v

= Max Eigenvalue E<7£le(r—RD) lz'>:{ =C

Again, this fourth term is negligible when inequality (15) is satis-~
fied.

Finally, the fifth term is of the order of BC and becomes
much smaller than B2/4 if inequal ity (15) is satisfied. Thus, the clus-
ter method of Brescansin and Ferreira is exact if one is abletochoose

a value of A such that

B << A << B/C (16)

where B is the bandwidth and C is the maximum eigenvalue of the ma-

trix
<z]®'(r-R0) |E'>
Any value of A satisfying inequality (16) will produce a set

of cluster levels which is a good image of the crystal bands and which
does not chanae when changing A within this interval.
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3. CONCLUSIONS

We may summarize the results of the preceding section by saying
that the Brescansin and Ferreira procedure is the only cluster approach
for representing an infinite crystal, whose justification goes beyond
the purely intuitive arguments. In this paper we derive the necessary
conditions that a cluster must satisfy in order to reproduce accurately
the main crystal features. We have also shown that, if such conditions
are met, the charge density’around the inner cluster atoms is the same
as the charge density around each atom in the crystal. The cluster ener-
gy spectrum then becomes a true image of the crystal bands, the discre-
te cluster levels lying between the band maximum and minimum. Moreover,
we can assure that no surface state arises in such a cluster energy
spectrum. We can also conclude that, if such necessary conditionsare
satisfied, the accuracy in the cluster results :depends more on the ac-
curacy of the quantum chemistry method used in the solution of Schro-

dinger and Poisson equations than in the cluster approximation.
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RESUMO

Um formalismo matematico foi desenvolvido de tal modo a determi-
nar as condigdes necessarias que um~pequeno.agfeg?do de atomos deve sa-
tisfazer para reproduzir com precisao as principais caracteristicas Qa
estrutura eletrdnica de um cristal infinito. Mostrou-se que se tais
condigoes forem satisfeitas a estrutura de banqas de energia do agrega-
do serd uma imagem fiel daquela do cristal. FOI.mgstrado, Fambem, que
quanto maiores forem as larguras das bandas pron?ldas no cristal, meno-
res serao os agregados necessarios para reproduzir sua estrutura de ban-

das.
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