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Abstract V¢ use the normal ordering technique and the coherent represen-
tation to describe the evolution of an open system of a single oscilla~
tor, linearly coupled with an infinite number of reservoir oscillators,

and we show how to include the dissipation and obtain the exponential
decay.

1. INTRODUCTION

In recent years the dynamics of an open system S coupled to a
reservoir R has received considerable attentionl—". According to some
authors', the open systems are of greater importance than isolated ones.
One of the first derivations of an equation of motion for an open sys-
tem was given by Bergmann and Lebowitz® and, after them, several authors

have treated this question in different approachese_e. The problems
which emerge when treating open systems usually refer to: (&) the ini-
tial states and its influence on the solution; (b) the problem of the
ergodicity; (c) the Markoffian character of the equation of motion; (d)
the construction of exactly solvable models; (e) the different techni-

ques employed to derive the equation of motion; etc.

The basic starting point for discussion of an open system is
the density matrix p(t) for the composite system g+g. The density ma-
trix obeys the Liouville equation and the behaviour of the open System

is i i ' = (t)7, where
S is inferred from the reduced density matrix ps(t) trR [pf‘b') J,

the variables of ® have been eliminated.

In this paper we conslider this problem by first treating an

open system in a pure state. This is posslble by setting the reservoir
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R at zero temperature or even in a coherent state. The main purpose of
the present work is to display a different and simple technique inwhich
we use the normal order character of the Hamiltonian H and of thetime

evoiution operator U(%).

The outline of the technique can be surnmarized in the following

way: given the Schrgdinger equation (& = 1)
dlu(e)>
T ——= Hyz)> . (1)
ot

where H = #(a,a”), a*(a) is the creation (annihilation) cperator for

some particle, |y(¢)> stands for the whole system $+R, and setting

Wt)> = ue) [p(0)> 5 w(0) =1, (2)
we obtain
ng% = HU . (3)

+
If H(a,a ) is in normal order, which means that all the crea-

X
tion operators a' are on the left of all annihllation operators a,

Hla,al) = () (™ ()" (4)

TR

mn
myn
and if we assume that U(¢) is also in normal order, which is written as
U(N)(t), the right-hand side of (4) may be set in normal or-der, by using
the equality®

anU(N) =N [(cx + _Q___)n 17(N) (a,&,t)] (5)

o

'(N) (OL,

where U a,t) = <an(N) (¢)]a> , {a> is a coherent state, i.e., alo>

. . g
= ala> and N is the normal ordering operator’.

In this way, inserting (4) into (3) and using (5), we get

57 )

Y

-.m d \n =)
= mgn hmn(t) ()" (o + ;g) U (6)
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= (W)

which is an equation for U
ly(£)> by

(a,&,t), When (6) is solved we obtain

) = N 5™ (@,5,0) vy . (7)

The advantage of this method is to transform an operator equation ( see

(3)) in a c-number equation (see (6}).

2. A SIMPLE EXAMPLE

A a simple example we solve the Schrc')!dinger equation for the
case of two weakly coupled oscillators A and B described by the Hamil-
tonian

H=wiag+Qbb+ \((abJr + aer) , (8)

where the interaction term (last term in (8)) is assumed to be of the
type introduced by Gordon et al'®; w and R are, respectively, the cor-
responding frequencies of the oscillators A and B and ¥ is the coupling
constant . As it can be seen, the Hamiltonian (8) is in normal order. On

assuming that U is also in normal order, we get

zéU(N) = Lua+ (U(N)a BU( )\l + QbJr ( (N)b (Nh‘
ot 1 sa’ | b
(v) )]

+ yaJr[ (w )b + zz+ } + Yb-l'_ [U(N)a + %%_—} . (9)

At this point we use the coherent representation. Setting
7™ (0,5,8,8,8) = <a,8l0® 0,85, (10)
where 'a,8> is such that
ala,B> = ala,B>
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(1)

b;(’.,_8>= Bla’6> s

and putting
l‘}(N) = exp[G(a,&,B,é,t)—l , (12)

where
G = A(t)aa + B(¢)BB + C(£)aB + D(£)af , (13)

we find two systems of coupled equations

7,A = wA + YD
, (14)
iD= QD + YA
and
iB = QB + YC
(15)

2C =wC + Y8 ,

where Aft) = A(¢) + 1; B(¢) = B(¢) + 1 and (cf. (2)) 4(0) = B(0) =C(0)
= D(0) = 0. Solving (14) and (15) we find

A(E) = exp(-2 () 6/2) [cos re - 122 sin I’tj{ (16)
D(t) = -<(y/T)exp [—i(wm)t/z] sin I't an
B(t) = 4(¢) (w < Q) 5 C(¢) =D(¢) (v Q) , (18)
where
r = ﬂ% + sz/z . (19)

L 4

Inserting these results (they should be compared with those in ref. 9,
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pag. 207) into (12) and (13) and using (7), we obtain [¢(¢)> in terms
of the initial state |$(0)>. If we suppose the initial state is a cohe-
rent state, i.e., |p(0)> = |a,p> , we find

N’(t)> - e(Aoc+CB)a+ + (BB+DOL)b+{OL,B> , (20)

which shows that a initially coherent state remains a coherent state.
This occurs because the present Hamiltonian (see (8)) belongs to the
class of Hamiltonians that mantains the coherence of an initially cohe-

rent state"™" .
If we assume that B=0, which means that an oscillator is in
the vacuum state, then

to
[p(e)> = da’ + Db )Ion,0> . (21)

This shows that only A{#) and D(¢) are relevant for the solution when
the oscillator B is into the vacuum state, It is also interesting to no-

te that only D(¢) is coupled to A(z) in (14).

3. GENERALIZATION TO N OSCILLATORS

Let us suppose now we have one oscillator A interacting with
two oscillators B, andB; (we neglect the interaction between Bi1 and B2 ).

In this case the Hamiltonian is

Bo=wala + Qbib, + Qubib,
(22)
. +
+ yl(a-rb1 +ab)) + 7, (a%2 +ab,)
Thus, according to the foregoing example, we set
-(V - - -
7 - exp[0(0,8,8,,8,,5,.8,, 6] (23)
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wher e

G = Ao + B;élsl + Bzézsz + 010-‘51

(24)
+ D08, + C,a8, + DjoB,
and we obtain, after sone algebraigal procedure,
ZA = wA + YD, + Y0,
(25)
iék=§zk0k+ykz\ s k=12 .

Here, we are not interested in the functions B, (¢) and G (¢). The ge-
neralization for the case of one oscillator A interacting with Noscil-
lators is straightforward and leads to the systemof coupl ed equations

N
WA + ) YD
%=1 Kk

A
(26)

iy = Qka + ykA
4. THE CASE N—o AND IRREVERSIBILITY

n assum ng now that w+<o, 2, will bel ong to a continuous spec-
trum'?. Qnce nore, according to the foregoi ng procedures, we set

[
]

G(a’&’{Bk}’{ék}’ t )

L}

40c + I BB, B,dk (27)

+

a kaBkdk + ookaBkdk ,

and we obtain
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A =wA + S Ykadk
* (28)
ka = Qka + YkA

In order to solve this system of coupled equations we introduce the La-
place transform

lee]

Alp) = j at e PP A() . (29)

0

By eliminating Dk in (28) we find
oo 2 s
~ T Yk
Alp) = |p +iw -2 oy dk " (30)
J

which may be inverted, yieiding
Atioo -1

2
® Y
AE) = —— dpept[;+iw-i” Q—’%dz] (31)
2t ] Jo [P
A=z L
where A is the abcissa of converaence associated to the Laplace trans-
form. The preceding result is similar to those obtained byother methods
(see refs. 1 and 2). Thus, if we make the assumption of weakly coupled
oscillators in such a way that Y, is a smooth function In the whole
range of integration and assuming
"
o dk < w (32)
J,
holds, the integrand in (31) is holomorphic in the entire complex plane
except on the positive real axis. A deforrnation of the path of integra-
tion such that it encircles the positive real axis yields (see, e.g.,

ref. 1)

NERR - P O

) (33)
o [w-a - A)]?+ I ()
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where

J(z) = my?(x)
(34)

Q2

M) = ij Y—Z%dk
0

In order that assumption of weakly coupled oscillators meke sense we
assume that

Mx), Jlx) <<w y x . (35)
In addition we assume that A(x) and J(x) are slowly varying functions

around x=w, otherwise the interaction would vary strongly in the neigh-
bourhood of w. Thus we mey meke the approximations

Alx)
J{x)

124

Aw)
J(w) (36)

R

The denominator in (33) has one zero in the lower half plane given by

w - Mw) - 27(w) , (37)

[
[}

which leads (33) to
Alt) = e-wt - J{wt (38)

where ® = w-A(w), which shows a frequency-shift in o due to the weak-
~coupling among the oscillator A and the oscillators B
(7) and putting 'w(0)> = |a,0> = |0>]0>, we find

i Golng back to

+

+ —afD, ()b, dk
(E)> = EA(“"‘“ w e R !o>] . (39)

This result shows that, except for a normal ization factor, we may write
the {pure) state for the subsystem A as

+
[, (81> = A B0 g, (40)
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It Is easy to show that
alb, (£)> = ah(®) |4, (8)> (41)

and !wA(t)> 1s an eigenvector of the annihilation operator g with eigen-

value given by

0l (2) = oA(e) = q o tuETWE (42)

The foregoing result shows explicitly the dissipation: the vector repre-
senting a'(%) in the complex plane rotates clockwlse with the shlifted
freduency w and has an exponential decay with a lifetime T = J'l(w). The
coherent character of the state I‘PA(t)> is due to the form of the Ha-

miltonlan and also to the initlal state (reservoir at zero temperature).

5. COMMENTS AND CONCLUSION

The precedent description refers to an open system of a single
oscillator coupled to N oscillators (¥»»), but the formal analogy bet-
ween an oscillator and the electromagnetic field could also easily be
transposed to the -problen of an open system of a quantized (single mode)
free radiation field. This is just the case of the electromagnetic field

in the single mode laser theory.

An apparent question that emerges from the present treatment
is: how to generalize this technique in order to describe an open sys-
tem in a mixed state? In this case, as it is well known, we substitute
[0(£)> » o(t) and U(t) = « P75 y(s) = & L where L is the Liouville
operator, viz., Lp = [#,0] = Hp - pH. Then (3) transforms into £3U/3¢ =

=LU=HU - UH
Therefore, whereas in the pure state case H is an explicit ope-
rator in terms of a, a4, bk and b7‘<, in themixed state case, with L,

the same does not accur. Then the generalization of the normal order
technique to mixed states seems to be not trivial. This questlon has
also been investigated by us and will be published elsewhere.
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RESUMO

Usamos a técnica de ordenacdo de operadores e a representagao
coerente para descrever a evolugdo temporal de um sistema aberto -cons-
tituido de un oscilador acoplado a um sistema infinito de osciladores
de um reservatorio de perdas - e mostramos como incluir a dissipacdo e
obter o decaimento exponencial.
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