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Abstract W study the specific heat of the anisotropic Heisenberg clo-
sed linear chain by using two different formalisms. These two approaches
give the same result and reproduce the well known exact results for the
Ising and XY models. These methods seem to be more suitable and power-
ful for better approximation when compared with other similar works.
& present explicit expressions for the internal energy and the speci-
fic heat, which are valid for any temperature, and we compare the re-
sults with the exact ones obtained for the anisotropic chain in the low
temperature limit.

1. INTRODUCTION

The most commonly studied system in statistical mechanics, on
which exact calculations have been performed is the one - dimensional
Ising model!. The reason is because it is one of richest and most Pro-
found model investigated so far and it can describe fairly well inume-
rous physical systems of interest. Indeed much of the theoretical study

in magnetism has been based on this model together with the Heisenberg

spin Hamiltonian?’3,

The solution of the one-dimensional spin 1/2 Ising model with

. . . . 4
nearest-neighbour interaction has been given by several authors . For
the one-dimensional anisotropic XY-model nearest-neighbour interaction

® calculated the exact partition function

only Lieb etal® and Katsura
and investigated the magnetic properties. The exact results for the iso-
tropic Heisenberg chain have been obtained by Fisher’ and are restric-

ted to the classical model.

Exact results have been also obtained for the classical aniso-
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tropic chain by Rae® and for the quantum model there has been a renewed

surge of interest in the model with and without external magnetic field,
12

. . v, 9-
although so far they are restrict to the low-temperature limit

It is the aim of this work to present two treatments to study
the specific heat of the one-dimensional ferromagnetic spin 1/2 system.
In the first one the results are derived from a Green function forma-
lism via Dyson's equation; the infinite set of equations for these func-
tions are solved exactly with the use of a transfer function. On the
other hand, the same results can be found by mapping the spin system in

an interacting fermion system by introducing the Jordan-Wigner trans-
formation®®, Although these two formalisms are different , they bear a
reasonably close resemblance as far as the nature of the problem is con-

cerned.

Sections 2 and 3 are devoted to the presentation of the Hamil-
tonian and the two methods of calculation, with the scope to find the
density of states of the system, In section 4 we calculate the specific
heat for both isotropic and anisotropic chain and cqmpare these results
with the known exact ones. The conclusions of this paper are in section
5.

2. THE HAMILTONIAN: TRANSFER MATRIX TREATMENT

V¢ consider the Hamiltonian for the one-dimensional system in
which spin J interacts only with spin § £ 1, namely

- © 5 &R
ol 7 5% S+ Y G+ )] w

where the sum on J runs from 1 to N; J is the effective nearest neigh-

bour exchenge and »Sx, Sy, and S° are half the Pauli spin matrices a.

The ground state of our ferromagnet, corresponding to the sta-
te of complete spin alignment, is denoted by o>, we may define a com-

plete set of orthonormal single spin deviation states {|m>m =1 ... a
where

[m> = sr; |o> (2)
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Using this basis, the matricial representation of the Hamiltonian (1)
is

<xn|H|m> = = § -ﬁ (

2 mm 2 (3)

n,ml + sn,m-l )

where we have considered in(3) as zero of energy the ground state ener-
gy - w2/ minus J°/2, and 6nm is the Kronecker delta. This rather ar-
tifical zero of energy has been chosen in order to get the correct re-

sults in the lirnit %% + 0.

The Green function matrix elements satisfy Dyson's equations

w G

jk(w) =0+ ) By O (4)

L

which, together with (3) yields

xy
=1 - L7
(- £72) Gy = ] 2 (Gn,n'l * Gn,n+|
Yy
2 __d .
(w - J72) Gpopel =7 @, + Gn,n+2) (5)
i i
i xy ]
2 H _ o d |
(- J72) Gn:nm B 2 (Gn,n+m-| + Gn,n+m+l)

This infinite set of coupled equation can be solved using the

transfer function®™™ defined by

G
T(w) = Uil PN 6)
Gn,n+m
and
Gn ntm =l
T'(w) = ==2""" form< 0 (7)
n n+m

As we can assume that the coupling with the nearest neighbours
spins are indentical we have Tw) = 7'(w). Equation (6) together with
(5) therefore yields
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w=- 7%2) ¢ [(w- 7%2)% - ny2:|1/z
T(w) = (8)
J%Y

The Pfunction above is compfex in the interval

- I8y - Y2 < g (9)

which correspond to the energy band of the systern. The diagonal elements

of the Green functions are given by

G, = [w- 12+ ow) ] (10)

The density of states is

i N
D{w) =~ o Imn nzl Grm (11)

or
2 -

D (w) =¥ Y - (- FPr2)? | 1/ (12)

where the signal in (8) was choosen in such a way that we kave a physi-

cal densfity of states.

In the special cases of the Ising model (7Y = Q, XY model
(7° = 0) and isotropic Heisenberg model (/Y = J° = J) we have respec-
tively, from (12)

Dpw) =¥ 8 (v- J2) (13)
Dy (@) = 5 (Y - (14)
DH(w) =% @I + Juo - ooz)_l/2 (15)
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3. THE FERMION REPRESENTATION APPROACH

The Hamiltonian (1) can also be studied by introducing the Wig-
ner-Jordan transformation13 which maps the set of spins in a system of
interacting fermions15 . In order to make clear the method we will pre-
sent the basic and formal results concerning the treatment of the Ha-

miltonian.

Introducing in the Hamiltonian (1) the lowering and raising

5
operators

a-‘:=.5x.+'£5y., a. =5 - ¢sY (16)
J d d Jd d d
in terms of which the spin operators are
+ +
a.*+a. a. - a, o +
Fadod ; F=d d ;5 =4 0, -1/2
J 2 J 27 J J o dJd
we obtain
+ + + + + 1
= —Z—E(aj %41 + @y aj) 7 § (aj aa.40054) " @5 9 +y ) a7)

If we introduce the Wigner-Jordan transformation!® defined by

J-1
+ . Tt + =
aj = exp (7,'“' QE] 02‘02’) C?j al = Gl » (]8)

where c's are fermion operators, (17) can be written as:

H=H P +H P (19)
with
N -1
Pi=-]-(]iP)=—;—Eiexp(7lTr Toetel)| (20)
2 =1 ¢ Jd
+
and #7 is
N-1
=S 7Y + + JY 4
B === j§1 (cj ¢in F+1 cj) * T (CN ¢t e ON)
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N
- J? e, oh -t I
JZ, (ej i i G "% %+ 1) (21)

The operator P satisfies the relations
* 2
] =[,H] =0, P2=1T, (22)

and we conclude that the eigenstates of Hi have definite parity. It is
important to note that P and P are projector operators for states
with positive and negative parity respectively. Therefore the eigens-
tates of H are the eigenstates of H with positive parity and the ei-

genstates of H with negative parity.

+ - . .
In order to deal with H and # we have to impose anticyclic

'€,17  |n the thermodynanic

and cyclic boundary conditions on c operators
limit the static properties can be evaluated by considering only . On
the other hand, in the calculation of some dynamic properties we cannot
neglect H+ and this fact makes these calculations very difficult to be
performedle. However, since we are interested only in static properties
we will indentify g with g . The interacting term of H- will be consi-
dereg in the so called virtual crystal approximation!® by assuming that
J° c,7'+l C‘7'+i
The average field is obtained by considering equal probabilities forthe

behaves as random field which takes the values 0 and g% !°.

random values (1/2) and doing so we obtain

Z
- J

Therefore in this approximation we can write H in the form

N N
S + + S ] +
H= - — .e.. . ) - == -ec.ec.) , 24
2 ;.E] (3 ega1 * %1 o) "2 jz] (77¢j¢)) (2
where we have assumed cyclic boundary conditions on C operators. H s

diagonalised by introducing the Fourier transform

ot =L T exp (ikj) g with k= + 2™ (25)

|
J VT k n
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where 7 runs from 0 to ¥/2 (¥ is assumed to be even for convenience) .

Then we get

+ 1
H—%%(ckck 2—), (26)
where
Y Al
W, = cos k + > (27)
It should be noticed that 2Jzappearsas a transverse field in
the XY-model. Naturally in this approach we get correctly the limit
J_ >0 °.
2
The Ising limit is obtained by Y= 0and in this case we get
the correct energy for the ground state namely E, = - v/,

The density of states is immediately obtained and is given by:

D(w) = (28)

A=

1
2 27,
ny _ (w_é)J/Z
which is identical to the one obtained using the transfer matrix tech-

nique. Therefore the different approaches will give the same result for

the therrnodynamic properties.

4. THE SPECIFIC HEAT

Using (15) or (28) we can easily calculate the internal energy
of the system defined by

o) = [ o) £l d (29)
where f{w) is the Fermi-Dirac occupation factor given by

P = xp(ee) + 07 (30)
and B = I/KBT.

Explicitly the internal energy is given by
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JY v 572

w dw

u(r) = (31)

sl=

7Y +7%/2

4.1 - Ising, XY and Heisenberg models

In the limit ny + 0 rhe internal energy is obtained from eq.
(31) by calculating Cauchy's principal value and we find apart from a

constant term.

u(r) = - ¢ tanh (RJ°/L) (32)
The specific heat is
2
ey =3V L BT e (gt (33)

2
ar 16 KBT

which has a rmooth maximum in the neighbourhood of KBT = J%/k but exhibits
no phase transition at finite T. The specific heat goes to zero at T =0
in agreement with the third law of thermodynamics. Also, (32, 33) agree

with the well known exact results found by several authors.

The partition function is defined from the internal energy by

94&n 2
38

u(r) = - (34)

and gives

Z = [2 cosh (BJZ/Q)]N (35)

From the partition function we can find now atl the other thermodynamic
potentials such as the entropy, Helmholtz free energy etc., as we are

looking for.

Using (31) the internal energy in the XY model is given by

/2
u(r)

< _;r. tanh (k cos 8) cos8 d8 (36)
bt 0



where k = 8792,

The specific heat is

v
C(T) 2 J C052 6 db (37)

NK cosh? (k cos®)

B 0

:a[x-

and both .the results are in agreement with Katsura®.

In a similar way, we can find the integral expressions for the

internal energy and specific heat for the Heisenberg model, namely

bk

u(T) 1 j (y-k) [} - tanh(y-k)]dy .
T el
oo 472 (eysy 12
and WK
o) _x/° (4-1) 2y
NEp ™R J (39)

yl/z (1-y/hk) Mz [cosh(y-k)+1]

4.2 - Anisotropic Chain

The specific heat for this case can be obtained from (31) as

c(ry = j B e—— (40)

where Wy, is given by (27)

In order to compare with the exact results surveyed by Johnson?°

we restrict our calculation for the low-temperature regime although (40)

is valid for any temperature.

For large B the asymptotic behaviour of (40) can be obtained by

using Laplace's method 2! and we get the results
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c(r) - 2™ {1 ) b Y 2
(e )1/ 7Y 7 exp [1{? [l - Z—ﬁ/—}
(41)
for |JZ/me[ > 2, and
28,°T
c{r) ~ (42)

'rr]:(l&ny)z - (J’g)z]l/2
for |Jz/ny] < 2.

A comparison between our results (41) and (42) with the exact
ones shows a difference in the interval 1 < IJZ/nyI < 2 where the beha-
viour is like (41). This disagreement can be justified due to our crude

approximation in considering no correlation effects in our treatment.

5. CONCLUSIOIUS

The main purpose of this paper was to show new derivations  of
the thermal properties of the spin 1/2 anisotropic Heisenberg chain. Ana-
lytic expression were obtained for the internal energy and specific heat
for the special cases of Ising, XY and Heisenberg models while a low-

-temperature expansion for the anisotropic chain was also shown.

The elegant way to treat the Green functions via Dyson's equa-
tion with ths transfer function technique was one of the main feature of

the calculat'ion presented here.

The other important features was concerned with the fermion ope-
rator formalism, first introduced by Jordan and Wigner. This formalism,
since then, has been used extensively and always it seems to be very po-
werful. The results obtained by using both formalisms are in agreement and

they reproduce the known exact results for the Ising and XY models.

Thr: little discrepancy found in the anisotropic chain, we be-
lieve can be overcome by including correlation effects into our methods.
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RESUMO

Estudamos o calor especifico de uma cadeia linear fechada usan-
do o modelo de Heisenberg anisotrépico, por meio de dois diferentesfor-
malismos. Estes formalismos fornecem o mesmo resultado e reproduzem,
como casos-limite, os ja bem conhecidos resultados exatos dos modelos
de Ising e XY. Os métodos de calculo utilizados nos parecem Se€r mais
convenientes e poderosos quando comparados com outros trabalhos simila-
res. Apresentamos expressoes explicitas para aenergia interna e calor
especifico, validas para qualquer temperatura, e comparamos nNosSs0S fre-
sultados com os resultados exatos obtidos para uma cadeia anisotrdpica
no limite de baixa temperatura.
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