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We have solved the Heisenberg equations of motion, for the.
creation operator of three independent optical modes, in a system des-
cribed by a trilinear Hamiltonian. W did a unitary transformation that
is equivalent to the short-time approximation when truncated in the se=-
cond order. This rendered possible the calculation of the normal orde-

red characteristic functions of each of the three modes.

Resolvemos a equacdo de Heisenberg de operadores de criacao
de trés modos 6pticos independentes em um sistema descrito por um Ha-
miltonianc trilinear. Para isto efetuamos uma transformacgdo unitaria
que quando truncada em 22 ordem gera o mesmo tipo de aproximagdo que a
introduzida pela aproximagido do tempo curto (*'short-time approx imation!’).
Desta maneira pudemos calcular a fungdo caracteristica ordenada normal -

mente de cada umn dos trés modos.

1. GENERAL DESCRIPTIONOF THE TRILINEAR MODEL
HAMILTONIAN

W consider a general model-Hamiltonian of the Tucker and
Wall typel. We assume that there are only three interacting modes. The

Hamiltonian is written as,

H=H, +H (1)
where R
_ +
H, _»;ZI Aw, a; a; - (2)
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a gk + + * 1k +
HI = igk (ﬁKi £ a;asay + EK,;E aiajak) . (3)

Ewk is the independent mode selector, that is equal to 1 if Z#j#k#Z
and equal to 0 in all other cases; K’L is a coupling constant and ag =

an a are the annihilation operators of the %Z,j,k modes, respective-

ly, these operators satisfy the commutation relations

[ai,ag:l = [a,(0), a;(t):[ =5,
[ai,aj:l = [a:;, a;:[ =0

where 6ij is the Kronecker Delta.

In Appendix A a few specific cases are discussed.

2. EQUATIONS OF MOTION

V¢ know that the Heisenberg equation of motion of any opera-

tor a which does not depend explicitly on time is given by

S TON (5)

From the Hamiltonian given in eq. (1) we obtain
G g (B,a0)] + [Epale)] (6)
Let us introduce the slowly-varying operator Ao(t):
alt) = A (¢} exp{-Zwt/}
then we can show that
-Z; [4,(2) exp(-twt/n)] =ﬁ£ {[Ho,Ao(t)] + [HI,Ao(t)]} expi-iwt/h } (7)
and
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date) ‘
—_dt— =h7 [HI’AO(t)]

It follows that

Ao(t) = exp{iHI /A, exp{-iHIt/ﬁ .

(9)

Aa(t) depends on the time in a way that is similar to that given in the

interaction representation3.

Nowweuse the short-timeapproximation', i.e., we assume

that the time of interacting is sufficiently small so that we may

ex-

pand the generic annihilation operator Ao(t) in a Taylor series andre-

tain terms only up to those quadratic in time:
'l .
A4,(t) = A, + At + 5 At
Substituting equation (10) in (8) we obtain:

o | - . 1 - 27
(A,(8) + 4,()2) =g Wy A At + 5 A,t°]

In order to find the I1st and 2nd derivatives of 4,{(¢}) we equate

coefficients of the polynomial in t, this yields:

Ae) =% [, 4]

4,8) = @ [, By, 4 1]

let us substitute equations (12)and (13) into eq. (11) to get
Z 1 (2¢)2 -
Ay(t) = 4, tE HI’Ao]t t7 [}i—] @I’ @I»Aoﬂ
that can be put in the form®:

A, (t) = exp{iHIt/h' 14, exp{—'iHIt/ﬁ} .

(10)

(11)

the

(14)

(15)
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We can see that this approximation is equivalent to (9), within thesort

-time approximation.

3. THE TRANSFORMATION METHOD
W introduce a unitary transformation operator

S(t) = exp{ZHt/%} = exp{i(HO+H Y7} (16)

T
s)se)t =1 (17)

where H is the hamiltonian given by equation (1). By the Baker-Haus~-

dorff identity we can separate S{¢} in two parts”®

5(¢) = explid ¢/} explill t/h} (18)
since we have [HO,HT] = 0 (appendix B) due to the conservation of ener-
gy condition (WJ. = mi+w2). The first part defines the unitary operator

that transforms to the interaction representation

§ (1) = exp{zH,t/% } . (19)

Then, in conclusion, if we want to find out the time evolution of any
operator that obeys the Heisenbera equation of Motion (5), we can use
the sirnple forrn

a, (1) = exp{iHt/ }ai exp{-tHtMA} =

= exp{iHIt/’i }ag(t) exp{-iHIt//’Z} (20)

where al_ (t) = exp{iH t/ila. exp{-CE t/i} is the interaction representa-

tion of theoperatorai_ Using the identity4
I z? o
exp(x4)B exp(-z4) = B + x{4,B]+ 5 [4, [4,8]]+... (21)
we find that
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Lo B
a (t) = a, expl uuit}

or

aw (£) exp{iHIt/ﬁ}ai exp{-iHIt/ﬁ} exp{-iwit} =

A (t) exp{-iw,t}
7 7

Where, up to the second power in t,

o 2
4,(t) = {A + ﬁﬁt AL + 7'.— [%} (@ ,[HI,ai]]} (22)

then our problem becomes one of doing two commutators.

4. STATISTICAL PROPERTIES

Using this method we can easily find the time evolution of any
operator fram the general tril inear Hamiltonian (1), that is:

) 't ') 2
ai(t) = exp{-zwit} {ai + -%— [HI’ai] + 12-: [’%—] (7 ’[HI’ai]]} (23)
where
- *
b i * % kmi o+ +
H [Ha IZ 2g {k ’.7%5 aqa, tKE aama,
£ ,m
I # * . ot . +
_ kmEmJlamakax + k;glkm (n,}afam + ajamag)] +

wp, Ldmit L mki_+
+ k?; Lkg.g a, a3 kmg'f' aagmg
-k mEmMa}gmgk K%E J amakazj} (25)
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This is essential in obtaining an expression for the normaly ordered
characteristic function, for the jth mode from which we can obtain the

statistical properties of the mode®. It is defined by
- + k
= a, -Ba.(t 26)
Cy(8;) Tr{D(O)exp[BJaJ(t)] exp[ieJaJ( )7} (

where p(0) is the appropriate density matrix®. With ai(t) given in eq.
(23), and with the help of eq. (24) and (25), we can see that

. . 'yt A2 l
exp [-Béag.(t)] = exp(-Y3.a3.) exp|- 4%— @I,aj:[ + AhL.Q]I’ @I’aj]]J (27)

where Yj = Bj exp iu%t. This follows from the Baker-Hausdorff jdentity
and from the easily shown fact that a; commutes with [HI’ai] and with
Fi ,[Hf,ai]], given by equations (24) and (25). Finally, with the short

-time approximation in mind, we expand

1

tA, + t®B, ] =1 + ¢4, + t*(B. + 5 42 28
exp [ 5t 3] tA ; (3 7 J) (28)
where
- T % -
L= yE A R
a; % - zv% [Ha]
Lo (29)
B, —Y% {H ,\H ,a.
J o oap2 Y L I J]
A similar procedure is followed for exp[Béa;:(t)]. One then obtains
Cy(B;) = Trio(0) exp(-B.a.) P exp(Bal)], (30)

where P is the 2nd degree polynomial in t:

]A2.+

- + 2 + .+
P=1+t(4.-4.) + t>°(B,-B.-4 A, - = = A,
(J J g ddd 275 17y

CIV(Bj) is then easily calculated if p(0) is written in terms of coherent

states.
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APPENDIX A

Parametric Amplification®

V¢ identify a;, a2 and a; as the pump mode, the signal mode and the

idler mode, respectively a;, a4, and aI).

The Hamiltonian (3) becomes

M= Ayala e ﬁwIafaI (A1)
and
Hy = glst E{KL(aLa;a; ) + XF aZaSaI} +
¢ L E{Ks(asa;az ) + K% a;,aIaL} +
+ & Ak (agatal) + Kiaag } (A.2)

The coupling constants have to be chosen according to conservation of

energy. Putting KS = 0 and KI = 0 we reproduce the Hamiltonian of pa-

rametr ic ampl ification:
+ + +
H=" waa; + ﬁwSaSaS + ﬁwIaIaI +
+ + o +
+ E{KL(aLaSaI) + KLaLaSaI}
Various other phenomena, such as generation of Stokes and anti-Stokes’
and frequency conversion®, of physical interest, can be described by

the same Hamiltonian (1) by suitablechoosing thecoupling constants

and identifying the modes?

APPENDIX B

Demonstration that

[#,,8,] =0
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From Egs. (1), (2) and (3)

7= 2 JkAT + 4 F
[H O,HI’, iZj 1 W, jg [aiai,ajakalj +
»

)

+ i?j /"ZzwiK; Ejkl [:a;ai,a;akay:l = (B.1)
jzkl 72 Ejkl{Kj(wg, oy - wj) aja}:ai +
+ K;.(wj - Wy - wk)a;akag} = (8.2)
= ;:kl ;32((»2 +wy - wj)ijm {KJ.aJ.aZaSL - h.cl (B.3)
by energy conservation w; = w, + wg, then
[HO,HI] =0 ' (B.4)
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