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In this paper we discuss some properties of the two-dimensional

] models. They are 1/n ex-

SU(n) non-linear sigma models, i.e., the cP”
pandable and ultraviolet renormal izable. Our main result isaproof that
the infrared divergences associated with the topological gauge field are

cancelled in the case of Green functions of gauge invariant operators.

Neste trabalho, apresentamos algumas propriedades dos modelos
sigma ndo lineares bidimensionais com simetria SU(n), ou seja, os mode-
los CPn-I. Eles sao expansiveis em série de poténcias de 1/n e renorma-
lizaveis na regido ultravioleta. 0 aspecto mais importante esta, porém,
na demonstracdo de que as divergéncias infravermelhas associadas ao cam-
po de gaugel topologico se cancelam no caso de fungdes de Green de ope-

radores invariantes de gauge.

1. INTRODUCTION

For more than two decades, non linear sigma models have played
an important role in our understanding of strong interactions. Initial-
ly, they were proposed by Gel I-Mann and Lévy1 in order to have at one's
disposal models incorporating the ideas of PCAC and current algebras.

Although non renormalizable, the four-dimensional versions were very
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useful for the derivation of low energy theorems in the so called phe-
nomenological Lagrangian era®. In the seventies the two-dimensional mo-
dels have gained a very important status for various reasons®’". They
are I/n expandable, exhibit dirmensional transmutation and asymptotic
freedom. Moreover, while mantaining renormalizability, it is possible
general ize these models to encompass local gauge invariance®’®. At the
classical level such models are integrable having an infinite number of

conserved currents, both local and non local®’**7,

The simplest extension is the CPn_] model® which is the theory

of an n-component complex field 2z, described by the Lagrangian density8

(our calculations will be done in the Euclidian region):

L= D |

DUZ uz (1.1)

where

D =29 Z 4

(L H

A = 7 bl PR

H n u
subject to the constraint zz = %

The invariance of L under the field transformation z - esz is

trivially verified. Due to this fact, z itself is not an observable

field. The latter must be a gauge invariant object.

Quantically, the dummy field Au becomes an independent field.
Within the I/n expansion, its propagator develops a pole at zero momen-
tum and consequently, the quanta of the z fields are confined®. This
fact, on the other hand, raises some suspicious about the existence of
the 1/n  expansion. Truly, as mentioned in reference 8, infrared diver-
gentes are cancelled in the Green functions of gauge invariant opera-
tors. A proof of this statement, valid to every order of 1/n, is the
subject of this communication. This result will be probably useful in

the formulation of the bound-state problem for this model.

The paper is organized as follows:

In section 2 we present the Feynman rules adequated to the I/n
expansion and discusss the ultraviolet structure of the theory. Section

3 is dedicated to the proof of the infrared finiteness of the Green
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functions of gauge invariant operators. Some remarks about possible ex-
tensions of our result are made in the Conclusions. W& have also added
an appendix with a brief derivation of the Feynman rules used in the

text.

2. FEYNMAN RULES AND ULTRAVIOLET DIVERGENCES

The Feynman rules adequated to the 1/7 expansion were given in
reference 8. For completeness, we present an alternative derivation in

Appendix A. The momentum-space rules are given in figure (1), where

S..
Alp) = ¥ is the z propagator ; (2.1)
pPam?
D(p) = [4(p)]™" is the o propagator (2.2)
with
1 ] vp2+bm? + /p?
A(p) = 7 7 n (2.3)
[p? (p>+lm*)] 12 vpZebm® - /o7
and
p P
- _ uv A
by®) =[5, - 5] P (2.4)
with
ot 2 2 177
P = [0 + ) () - L] (2.5)

i th A = /}’L )
is the . )\u/ propagator

The a field is a Lagrange multiplier introduced in order toen-
force the constraint 2z = n/2f.

The graphs are to be constructed using the above rules, but

ommiting diaqgrams containing the graphs of figure 2 as subgraphs.

Note the pole of the hu propagator at zero momenturn. Therefo-
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re, in the non relativistic approxirnation,

the quanta of the zi fields

(called partons in reference (8)) interact via a Coulornb like potential.

In two dirnensions this rneans confinement.
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The a field, on the other hand, does not haveany singularities
for real momentum. Thus, there is no particle like interpretation for
this field.

Another consequence of the pole of the Au propagator is that
the Green functions are, ingeneral, infrareddivergent. However, in
the sector of gauge invariant objects, these divergence are cancelled,
as we discuss in the next section. At present (assuming some kind of
infrared regulator), we want to argue that the model is renormalizable.

This is done as follows.

The degree of superficial divergence associated with a proper

graph y can be obtained by power counting and is given by:

Sy) =2 - & - u° (2.6)
where
N>‘ = # of external wavy lines of
1.70 = # of external dotted lines of y.

Observe that &§(y) does not depend on the number of external
lines of the % fields. However, as shown by Aref'eva®, if 1v2>2, these
divergenceg¢ will be cancelled. This result follows from the graphical
identity of figure (3) which corresponds to the classical constraint 22
= constant. Figure (4) provides an specific example of how this cancel-
lation works. In that figure, graph (b) has a subgraph with the same
divergence as the graph (a). If we contract this subgraph toapoint and

use the idantity of figure (3) we obtain the cancellation of these di-

A

Figure 3

vergences.
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(a) /\

(b)

- - -

Figure &

From the above discussion, we conclude that we can restrict
our analysis to graphs with Nz £ 2. W have then to consider the follo-
wing cases:

1. 5" =0 w%=1. As the a field is not physical, this kind of diver-
gente will occur only in 1PI subgraphs of Green functions with at least
four z, fields (more precisely: at least two z's and two é‘s). As ar-

gued before, these divergences are cancelled.

2. NX =0 N =0 N®=2 6(y) =02 Convergence can be achieved by ad-
ding a second degree polynomial on the external momenta of the graph vy.

The corresponding counterterm has the form a zz + b Buéauz.

3. NA = I_, w° =0, v =2 §(y) = 1. The necessary counterterm has the

form _b%{ Xué*g:iz. Because of gauge invariance, the coefficient of the

counterterm is the same as in the previous case. This can be readly ve=

rified by noting the following facts:

(i) the counterterrns can be sirnulated by application of Taylor opera-
tors of degree §(Y) in the external momenta of Y.

(ii) at zero momentum, the insertion of a wavy line in a continuous one
has the same effect of a derivation with respect to the momentum

going through the latter.

4, NA = 2, IVO =0, V¥ = o Although each graph of this type is logarith-

mically divergent, the sum of them is finite. This is proved by the sa-
me argument used in the previous case. For example, the sum of the graphs

of figure (5) calculated for zero external momentum is proportional to:

J g b, (@) j Pk %EE {zkOC B(k) (2keq)., Alkrq) (2K+q) A(k)} =0 (2.7)
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Thus, the sum of the graphs of figure 5 is finite.

5. Nh =2, IV0 =0, I\Iz = 2. The necessary counterterm is of the form
%;z)\ A, arid, again, the coefficient turns out to be the same as in the

(S
cases 2 and 3 because of gauge invariance.

We conclude that the theory can be made ultraviolet finite by
adding to the original Lagrangian the counterterm a zz + bﬁu—z_ DUZ with
the coefficients a and b fixed by mass and wave function renormaliza-

tion.

3. INFRARIED DIVERGENCES

As mentioned before, the fact that the Au propagator has a
pole at zero momentum implies the existence of severe infrared diver-
gences. These appear already in the lowest non trivial orderasexempli-

fied by the graph of figure 6.

Nonetheless, the physics is in the sector of gauge invariant

objects and there we can prove the cancellation of the divergences.

To attain this goal we note that in the infrared region any

TN

Figure 6
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graph is at most logarithmically divergent. Then we prove infrared fi-
niteness by verifying the cancellation of the residues of the pole as-
sociated with any internal wavy line. To be more precise we state our

result in the form of a theorem.

Theorem: The CPn_] Green functions of local gauge invariant

operators are infrared finite in any order of the 1/n-expansion.

By linearity, we need to prove the theorem only for the case

of Green functions containing operators of the type:

(z,) (<) () oy () (n') yr (n) )W
5 N R [ Ve [ ][ m [ m
Ful\)1 F“n\’n [Dpi Z%J Dpl 281 Dpn'; ZO’mJ me zgm”
(3.1)
(7) _ -
d _301... an 3= 7T (3.2)
(n) _ . . 0 _
Dy = (Bpl + 1Apl)...(apn + 1Apn) D =T (3.3)
>‘u
4 =M (3.4)
L

The objects (3.1) constitute a basis in the sector of formal-
ly local gauge invariant operators. To prove the convergence, we obser-

ve that:
A

. N )
(i) As Au = ~E-couples to the gauge invariant current ju = zD“z,it is
sufficient to prove the convergence for operators without factors of
Ehv'

(ii) 1t is always possible to choose the loop momenta so that the set
of lines belonging to a given loop contains, at most, two lines joining’

at a given vertex: one of the lines is associated with a z field and

the other one with a z.

It is useful to decompose the operators in (3.1) into a sum

of terms of the type
HIOLI EO‘J {IBI zBIJ [IOL EOLJ [IB 2g D (3.5)
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where each Ioc- (and also each IB ) is a product of factors, each one

being either Iaderivative 311 ora field )\u

After these considerations, let us examine the possible di-
vergences associated with a given internal wavy line. There are two

cases which must be analysed:

12} At least one of the two ends of the line belongtoa loop
which does not contain external vertices. This means that one of the
ends of the line belongs to a loop, C let us say, which only contains

vertices of the type z_:DUz.

As remarked before, in the infrared region, the insertion of
a wavy line is equivalent to the derivative operation. Therefore, the
graphs that: differ from each other only by the internal vertex of C in
which the wavy line ends, summed up will give a total derivative with
respect to the loop momentum through C. After integration this gives

zero.

As the infrared divergence is, at most, logarithmical, we con-
clude that the graphs of the type considered add up to an infrared fi-

nite result.

22) None of the ends of the wavy line belongs to a loop con-
taining only internal vertices. The reasoning is the same as before.
Here we also have to consider the possibility that one of the ends of
the wavy line is attached to an special vertexof type (3.1). However,
it is easily verified that this case gives contributions to the deriva-
tive of the momentum factors that, without the wavy Iine, would appear
in the mentioned vertex. W conclude that the sum of the graphs results

finite in the infrared region. This completes the proof of the theorem.

4. CONCLLISIONS

W have shown that the Green functions of local, gauge inva-
riant operators are free of infrared divergences. Although our discus=-
sion can not in general be applied to non local objets, there are some

instances where the validity of such extension is easily verified. For
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example, if the non local operators are functions of %
4

A11 dx“, where C
is some smooth contourn (Wilson loops, the instanton topological

char-
ge, etc.) , one uses Stoke's theorem obtaining an expression obviously

infrared finite.

Another case is that of the open string

- y u
z(x) exp i J AU dx z(y) '
X

Although classically this object can be written in terms of the opera-
tors (3.1) (by expanding around the point x =y), it seems that quanti-

cally there is no simple argument.

We have considered just the case of 6=0 vacuum. The treatment
for the case 6#0 is similar, because the Feynamn rules for the latter
possibility® differ from those given in section 2 only by the addition
of a new vertex proportional to the topological charge f ngWdzx. It
is easily verified that these contributions do not produce new infrared

divergences.

Due to the mass transrnutation, the 1/n-expansion is less sin-
gular than the perturbative one. In this context, it is interesting to
compare our result with that obtained by a perturbative expansion of
the 0(n) non linear sigma modet!®. In that case it was found that the

infrared finite physical objects are those globally gauge invariant.

APPENDIX

in this appendix we want to give a brief derivation of the
Feynman rules of the 1/n expansion for the CPn-] model. Using functio-
nal techniques this was done in reference 8. Here we proceed as fol~-
lows. First of all, in order to implement the classical constraint zz=
= n/2f, we introduce a Lagrange multiplier field ofx), so that the La-
grangian for the model becomes:
7

L=DzDz+ o(zz - »7 (A.1)
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The field equations are then:
- (2 2, -
DU(DUZ) (2,0 Duza) - 2 0 (A.2)
Quantically, the field can develop a non zero vacuum ex-
pectation value <0> = m® #£ 0. Making a shift a > a + m? where the new a
has zero vacuum expectation value, we get {discarding a constant term):

T3 2 2 e -
L—Duz Duz+m 2z + o(zz 27 (A.3)

The condition <0> = 0 gives

2
dp 1 _n_y (A.4)
(2m)% p? + m? 2f
As the integral in (A.4) is logarithmically divergent, we
replace it by the regularized expression
| 2 ( L. (a.5)
(2m?* | (* +m®)  (p* + A?)

where the Pauli-Villars regulator (A) shall tend to infinite at the end

of the calculation. Before that, we introduce a renormalized coupling

constant f'y,(u), defined by:

2
x 1. In i (A.6)

1
fr r 2T u?
The use of (A.5) and (A.6) in (A.4) results into "mass trans-
mutat ion' by which a theory containing only dimensionless parameters ge-

nerates a mass. In the present case it is given by:
m? = u* exp (- -j‘;.—"-) (A.7)
r

Using (A.3), it is easy to compute the leading 1/n contribu-

tions to the proper two point functions for the o and Au fields.

2
M) - 4k ! ! (A.8)
(2m)? (k* + m?) [(k+p)? + m?]
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r (A.9)

(2) () 2y szk 1 I P2 PP, ),
A v uv (212 (x2+m?) (2m}? (k24m?) [(k+p)? + m2]

{A.8) and (A.9) come from the graphs of figure 2 (b) 2 (c,d)
respectively. As it happens in gauge theories, (A.9) has no inverse. To
obtain a propagator we need to fix the gauge what is made by adding

S (3.4.)%to (A.3). In the Landau gauge (0~>0), we obtain:
200 YTy

propagator: D(p) = [A(P)]-l

with
4p) = o= ! In o s bn? s o (A.10)
2T 2¢.2 2y1/2 7 2 2 )
[p?(? + 4m*)] o2+ bn? - b
pp A
)\U propagator: Au\)(p) = (GU\) ——:2—\)) D™ {p)
with
A _ I 2 ] -|'_1
D(p)—ILQo + n*)ap) - | (A.11)

The Lagrangian (A.3) and the expressions (A.10) and (A.11)
give the Feynman rules listed in the text. The diagrams of figure 2 are

to be omitted since they have already been explicitly considered.
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