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V¢ have obtained the equil ibrium solution of the Fokker-
-Planck equation for both liouvillian and non-liouvillian systems. Ve
have exhibited the procedure to solve the diffusion equation for non-ho-
lonomic systems. W& presented a suggestion to where such systems may be

found in nature, at the microscopic level.

Obtivemos a solugdo de equilibrio da equacgdo de Fokker-Planck
tanto para sistemas liouvillianos quanto para n&o-liouvillianos. Mostra-
mos o procedimento para resolver a equagao de difusdo para sistemas n&o
-holonomos. Foi sugerido onde tais sistemas poderdo ser encontrados na

natureza ao nivel microscopico.

1. INTRODUCTION

In a previous paperl we have derived the Foller-Planck equa-
tion for a system of particles subject to non-holonomic constraint. V¢
have proved that the equation obtained is invariant under general point
transformations and we derived from it the equation for the diffusion

of particles.
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Discussing the diffusion equation we were able to show that
systems subject to constraints can be classified in two general classes:
(i) the liouvilltian systems which contain all holonomic as well as some
non-holonomic systems whose major property is to exhibit a static equi=
librium state and (ii) the non-liouvillian systems which are necessari-
Iy non-holonomic and exhibit in their equil ibrium state permanent sole-
noidal currents. These currents are a direct manifestation of the struc-
ture of the non-holonomic constraints and it is independent of how the
system was prepared except perhaps for the influence of the shape of the
container on the current pattern. This stricking result for non-liou-
villian systems was obtained by the intermediation of the diffusion

equation.

In this paper we derived this same result by exhibiting the
structure of the equilibrium solution of the Fokker-Planck equation thus
avoiding the intermediate step of obtaining the diffusion equation. W
have shown that while for tiouvill ian systems the equation obtained for
the equilibrium density is exact, for non-liouvillian systems we could
only obtain it approximately by expanding the density in powers of the

square of the mean free path of the particles.

The classical result that gives the energy per particle pro-
portional to the nurnber of degrees of freedom could only be proved if
one includes besides the random motion of the particles also the' energy
associated to the permanent currents. In particular, this result says
that the permanent currents are proportional to the temperature of the

system.

Having therefore stabil ished the diffusion equation by two
independent methods we proceeded discussing the Green's formalism for
obtaining its solution with given boundary conditions on the surface of
the container of the system. W were able to show that the equilibrium
solution is unique in both tiouvillian and non-liouvillian systems. Ho-
wever, the transient behaviour of these two kind of systems may be subs-
tantially different: while liouvillian systems behave as a normal fluid
approaching its equilibrium monotonically, non-liouvillian systems may

approach its equilibrium by intermediation of an oscillatory regimen.
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Before steping into the formalism, we would like to ponder on
the physical real ization of such systems at the microscopic level, To
fix our ideas we may imagine the particles under consideration to be
electrons with the molecules being responsible for the non-holonomic

structure of their constrained motion.

Such systems has not been observed so far. However the holo-
nomic and non-holonomic molecular organization ca be identified with

certain mesomorphic phases of liquid crystals as we will show presently.

Let us first consider the smectic-A mesomorphicphase?. In
this case, the rod 1ike molecules organize themselves in layers with
their mean directions perpendicular to the surface of the layers. If we
identify this mean direction with the vector Z(;), the form a.dv is in-
tegrable, the fol iation corresponding to the layers. These are examples

of holonomic molecular organizations.

We now consider the cholesteric mesomorphic phase. Here, the
organizaticn of the rod like molecules are tangential to the plane layers
and rotates when one moves from one layer to the other. Calling again
Z(Z) the mean direction of the molecules, their organization is des-

cribed by

= cos (g,2 + ¢)

&
3, = sin g,z + ¢)
az=0

with the z-axis perpendicular to the layers. Writing

w=a.dr ,
we have
wAdw=—q0

. . . . . > .
This is an example of non-holonomic organization. As a s

>
parallel to curl a, this system is also liouvillian.

Liquid crystals are layered molecular organizations and we
do not believe that they can exhibit, as such, a non-liouvillian struc-

ture. Besidss, the electrons in the molecules are free to move, as in
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> >
the cholesteric mesomorphic phase, in the direction of a(r) and not
perpendicular to Z(;). Therefore, the field 3(;) does not represent a
constraint to the motion of the electrons in the sense that will becon-

sidered in this paper.

To observe the systems we have in mind one would have to con-
sider building blocks in the form of discs and not of rods as it is com-
mon with liquid crystals. Actually, only recently liquid crystals with
disc 1like molecules has been observed®. These disc 1ike building blocks
would have to articulate themselves in a twisted three-dimensional non-

-holonomic structure to produce a true non-liouviliian system.

We therefore believe that the realization of non-liouvillian
system would come about in large molecular structures possibly of bio-
logical origin. We may even speculate that the permanent currents we
have predicted will exhibit a kind of superconduct ing behaviour at room
temperature and the magnetic field created could be used by the molecu-~
les as a specificity device for its functioning in the biological envi-

ronment.

2. THE FOKKER-PLANCK EQUATION

W will summarize in this section some of the results we have
previously obtained'. We assume that the particles move in a n-dimen-

sional riemannian space with kinetic energy T given by

]
T=%9..4% . (2.1)

W call this the free system. W add to it, first by a set of m inde-

pendent scleronomic constraints

where
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Secondly we add a viscous force -gvtwith constant coefficient & of vis-

cosity and a Langevin force F7.(t) with constant strength i.e.,

<E,(8)>

1§
[o=)

<Fi(t)Fj(t')> 2K 9: §(z-t')

where K is a constant.

Under these assumptions we may speak of the distribution of
probabil ity W(q,v;¢) of particles in the phase space of the system. To
mantain ¥(g,v;t) invariant under general point transformations of the
configuration space we have introduced the measure weight u(q,v) of pro-

bability given by
ulq,v) = glq) II é(a %)
o=1

with g = det (gij)'

In particular, the normalization of W(g,v;t) is given by

1 = J d'q dv g(q) II d(a v )W(q V3 £)

o=1

The equation that W(qg,v;t) satisfies is a straightforward ge-

neralization of the Fokker-Planck equation* and we have obtained!

W, U%Q%_er%vk)= - EvW+Akv‘7ka+KQl‘73W
ot a7 J 87) l a/

(2.3)
where(*)

(*) W use the semi-colon to denote the covariant derivative associa-

ted to the affine conexion erk.
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gL ¥ o BgikJ
kT 2 k T ’
7 ¥ aql aqz
Z T ofa
A, = ) aa (2.4)
gk as] O 7k
and
m .
ii_ ii ig
QY =g ) aa - (2.5)
=]

We proved in reference 1 that eq. (2.3) is invariant under

the following transformation:

=3
R -1 .
5t =80 7
8q‘7

Our purpose in this paper is to exhibit a static solution

Wl(g,v) of eq. (2.3).

3. THE STRUCTURE OF THE STATIC SOLUTION
We assume that the static solution of eq. (2.3) has the form
W= exp () (3.1)

where § is a real function of q and v. This hypothesis is sufficient to

guarantee that W is a positive function.

Ve take for ¥ the general form

v/2 2 Zv
4, g @) L (3.2)
I v! Y

<
il
~
Iy
(s
#
fte~1 8
w

where B, the inverse of the temperature of the system, is introduced in

eq. (3.2) to make A dimensionless

21,...,2v
We will assume, without loss of generality for Y, that
A is symmetric in all its indices and satisfies the following
Liseesly
equation:
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Under these restrictions one observes that § is independent

of v if and only if A =0
Benenty

Making use of egs. (3.1) and (3.2) we arrive atthe following

results:
a—aW,L—-I‘ikéw—.vk vt o= ot A
3q a? 8q7’
o (v=1)/2 9 3
+ g AJL 9 L.v ! vV
V=2 (v-1)! 170ty Y
(3.3)
and
3 . , . - , v/2
— (& o' + At'k k) = W{_(n'm)i +pot ek
v J z v=1 (v-1)!
B8,
A v , (3.4)
where
_ Lk
by = ik
We further have
‘. 82 .. 3 2
] Z = gl f;Ez N L3V |y (3.5)
optay? wt w! e
g2 o o(w2)/2 S 2 .
Q™ ‘f - 7 & 4%, g v eeew VAt (3.6)
R ARV Y, TRy ®y @
.. . o (v+2)/2 4 4
ngaiiﬂ—.=&4$,4.+2 z —8—|—'—'—- A7/A7:2 27)1...7)\)+
w® 97 * =1V bty



o y-l (v+2)/2 L L

g & 1 v
+ ] J  Eee—— A v oo . (3.7)
ve2 VISl ul ! (uvi) 21,...,SL\), 22\),“...2\)
Let us now observe that for any tensor B2 0 which satisfies
R
JLl JL\)
By o v v =0
1 )
we rnust have
PB =0
Lyeak,
where P is the projector
1 1 ‘, ] ]
P L QZIQ%- 01"
Q, ...Q, Vi ( 1 |) 2/ /Q/ J)’(‘/
1 v . perm Q,l ...Q,V 1 2 V

with the sum in the above expression running over all v! permutations

of the set of indices (JL;--.R\'/)-

Geometrically P extracts for B its syrnmetric part which s

>
orthogonal to the subspace spanned by the a, vectors.

Substituting eqs. (3.3) to (3.7) into eq. (2.3) and identi-
fying equal powers of V we obtain and infinite set of coupled ©qua~

tions for the tensors A .
JLI...JL\)

The term independent of p gives

(n-m)e + KB (4%, + 2%4.) = 0 (3.8)
7 7
Let us set
i _ _ 1 7
A8t
and
£ = KB . (3.9)

From eq. (3.8), we obtain
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B, = 4%, =0 (3.10)

The terrn linear in p gives:

_— . .
=Apb, - ¢) %) + 28,49 + 49 1
(t @ a<7)+ BijA +Aji (3.11)
q
where
[ (3.12)
EVB

is the mean free path of the particles.
We also have

1

B =-AP2a + 494, + 8 8. &4l 3.1
2.2, 2,59, i, TP e, T 740 0, (3.13)
and in general we obtain (for v 2 3):
APag g A=y *lAJx .8 *‘Z“(Bi i +
v Ay IREREN J v Vv L d% 2.\)
v-2
. o (v-1)
+ cyclic terms) + V- I: .
v'=2 \)ll(v v')! Q/ V;JQ\) e 2\) (3”*)

Ve may look for solutions of egs. (3.11), (3.13) and (3.14)
as power expansions in A. By an iterative procedure we can show that

if such sclutions exist they have the following structure

v T 20

4 =AY A4 , VE2 (3.15)
LT a=0 21...1\)

- A.2 AZa o
d =0 TJ

In particular we have
Cap, -

Ay = b, o & (3.16)
ey by - @) @+ D (3.17)
5 2 Tk Bq k j ) )
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Let us now observe that if

A;= 0, (3.18)

then every

and

Thus W(q,v) takes the simple form
Wig,v) = expla - g— g vid) . (3.19)

Eq. (3.18) defines the Liouvillian systems and W{g,v) given
by eq. (3.19) is the equilibrium solution for such systems. This is an

exact solution.

In the case where it is impossible to find A such that eq.
(3.18) is fulfilled, the structure of W{g,v) is more complicated and

we have to resort to the A? power expansion.

4. THE A* APPROXIMATION

W will now discuss the approximation for W in which one in-

cludes only terms up to A®. Therefore we have

A =nad =n -2 w0y (4.1)
aq
1 2
A LT ok aqg Y, tOU  (h.2)

and all other tensors are of order equal to or larger than A%,

The solution W(q,v) of the Fokker-Planck equation takes then

the form of a gaussian in its dependence on p:

. o4l s 4t
Wig,v) = EXP(A + ';' AiAl - g (Qij_Bij) W - A?s) " - A/E)}
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Let us calculate p, j7’ and P*. V& have

ola) = [d% g 1 slahInla,o) - %exp@ + g a4
4

which, due to eq. (3.10) gives,

p{q) = const exp(4)

from where we conclude that
A = log p{q) + const.

Similarly we have

X . m .
gt = J}ﬂ’ Vg 1 8@t w d = .
a=1 v VB
Making use of egs. (4.1) and (4.3) we arrive at
y , T
it = b - ¢* )
Z
3q
where D = A//B is the diffusion coefficient of the system.
One observes therefore that in the equil ibrium state,
in general not zero(*)
We also have
P = jvzvg/g_ﬂ § (@) wd'
o=
thus
7 . J m
p —]EAA‘7p+Jv7’-A— v'j—/—l— vg 1 av ) wdw
VB VB a=1

It is

(*) This is the same current obtained elsewhere (1).

preserving only terms up to AZ:

(4.3)

(4.4)

(4.5)

j’b is

(4.6)

interesting to observe that the first term of the se-
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cond member of the above equation comes from the local collectivemotion
of the particles given by jl while the second term is the contribution
for the random motion of the particles with respect to the local cur-

rent.

The local density of energy is given by ]7 P.i and, making use
of eq. (3.10), we obtain
1 2 _ (n-m)p
2PT 7
therefore stablishing the general result of kinetic theory ~of which
states that the average energy by particle is ZLB times the number of

degrees of freedom (n-m).

One should emphasize that this result is correct in the case
of non-Liouvillian systems because we have taken into account also the
energy associated with the collective motion described by the local cur-

rents, coming from the first term of the left hand side of eq. (4.6).

W still have to examen eq. (3.10) within the A® approxima-
tion. This is an equation for A. Substituting eq. (4.3) into egs. (4.1)
and (4.2) and these latter into eq. (3.10) we obtain:
1 ) - Lk 3 -
— (b, - @ <) (" = ¢ =
o ] 3q 9q

] 3p 'k
- (pp. ¢, —— L.
P (pt Qi an 37<Q 0.

After some tedious calculations we finally arrive at

K _ ik dp

R Rl (1.7)

which is the same equation for the equil ibrium density for the diffusion
of particles, in the A? approximation, obtained previously (eq. (5.5) of

of reference (1)). One shouldobserve that this equation is nothing

else that the expression of the conservation of the current.

5. THE LIOUVILLIAN CASE

We have now come to the point where we should discuss the

solutions of eq. (4.7). To simplify the discussion we will consider only
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(*).

this section that the constraint is liouvillian, i.e., there exists a

the case of a single non-holonomic constraint We further assume in

function ¥ such that

b'LEa‘jai, ,=QL‘7-8-‘12—. . (5.1)

W set
p=0pexp

and eq. (4.7) takes the form

a i By _

‘——Z (Q g exp U] ——) =0 . (52)

J
aq 3q

Let us consider the operator H defined by

ar= - L8 Jgtd 3, (5.3)
with
n = /97 exp P .
W will be looking for solutionsof the diffusion equation

ina volume £ bound by a surface C. With this inmind, wedefine the

inner product of two functions f, and f, as
(£1,5)) =J £* uda (5.4)
0 172

and we take for the space on which H operates the space of all normal i-

zable function with norm given by the inner product defined above.

W further restrict the functionsf to those that the deri-
**
vative at the boundary satisfies the equation( ):

(*) The holonomic case has been discussed in (1) and (5).

(xx) The presence of €Y in eq. (5.5) playing the role of a singular me-
tric could make irrelevant this boundary condition of f. Thisis im-
possible for non-holonomic constraints in the neighborhood of C un-
less Z is an isolated integrai of the constraint. In this case Q is
a natural boundary to the motion of the particles. Such an example
is congidered in section 8. In such singular case we may take
B?;f' doY = 0 to make the solution unique.
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Qij if_. doi =0 (5.5)

where do,,, is an element of surface at the boundary.

As the current is given by:

< S5 90 i ij %p ¥
T Q - b = J e s
A Y U

the boundary condition given by eq. (5.5) is equivalent to assume that
no particle flows in or out of the volume £ bound by Z. Thisguarantees
*

the conservation of the number of particles inside C

Under these assumptions one can easily prove that H is her-

mitian. Besides, if foc is an eigenfunction of H:
HBf, = of

we have:

J n
alfy,fy) = J 83, fo @ 3 fuda 20

what shows that the spectra of Z is non-negative (we can always assume

that fa are real functions).

The equilibrium distribution is given by the eigenfunction f

and we have:
Jaifo Q7o fouda=t
what gives
%) -
Q aj f, =0 (5.6)

As

(*) This boundary condition is sufficient but not necessary to guaran-
tee the conservation of the number of particles in the volume R
See the example in section 6 of this paper.
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8 7 %

for non-halonomic constraint the unique solution of eq. (3.6) is
f'0 = constant .

This shows that the equilibrium state of the liouvillian sys-

tems is unique and we have

P = const. exp(b{q)).

Wewill consider now the time dependent diffusion equation

obtained in !, which can be put into the following form:

o _ -
5e =P

The equation
&+ pHG) = 8(t-t,)8" (@=a,)

has the solution

-Dot(t-to)
G=TZe fola)fy(a,) for t >t
a
G=20 for t < ¢,

where foc are the orthonormal ized eigenfunctions of H and obey
L () (q) = §"(a-q,)
o o Ty Q’o = q-4,

The general solution for p(q;t) is

] ] ~Do(t-t,)
pla,t) =7 + aZo e f @) (£ lay),0(Ey))

with p(t,) the density distribution of the system at the instant t, and
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n
y = ( uwdgq
o
One therefore observes that the modes included in the initial
distribution p(to) damps out each one with this characteristic relaxa-

tion time given by

6. AN EXAMPLE

We now consider the case of particles of unit masses rnoving
in the three dimensional euclidean space subject to the constraint given

by the following form:

xdy t+ x dz =0 (6.1)

where x, is a constant length that fixes the scale of the systern. This

is a non-holonomic constraint for which

o

11

Q

.,
QL

] a
o

It

(=]

e

and therefore liouvillian.

The diffusion equation takes the forrn.

2

a2 d d 32
%%:——g+—2-l———- xﬁ-——e-—z:r P, 220 (6.2)
A Ty + z? oy dy 9z 3z?
One observes that the equation is invariant under transla-
tions in the y and z directions. W therefore set periodical boundary

conditions in these directions in a retangular box of faces perpendicu-

lar to the coordinate axis.

We write

ik, (y=y,) Tk, (z-2))
b, = 9,(@) e e
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and we set

(6.4)
ka(zz-zl) =2n,m
where
z=z, ; x=ux,
y=Y, 5 ¥=UY,
z2 =3 1 8 =23

are the equations for the faces of the box. We impose ¢0‘ to be aneigen-

function of

H =-f‘ﬁ_+-——L— {xoa——xa—ril (6.5)

e? 22 +a? |y 8a
and we have
3%9,,
) S22 + V(kz’ks’-”)d’@ = 0L¢a (6.6)
where
(x k, - xk )2
Yk, Ky ,z) =~ (6.7)
2 2
Ty +x
For ¢a(x) we impose the boundary conditions
3 3
;9 " = # =0 (6.8)
T lg=e,  F |z=x
With the above boundary conditions for each k, and %k, , a

takes discrete values which we enumerate from zero starting from the lo-

west eigenvalue. Thus we write ¥ (x,y,2) to the eigenfunctions
12727773

of H given by eq. (6.8).

The Green's function for H can be written as
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- - -t
u(rzl ,nz,ns) (t-¢')

= DR (x,y,2)¥* (x',y',2")e
R mynphg s YT Ty,
for t 2 ¢t' (6.9)
and
GG, t30',t') = 0 fort < ¢'
From the fact that
= %
wnl,'nzv‘ns(x’y,Z) wnl,"zyna(x’y’Z)
and that the sum in eq. (6.9) runs over all integers n, and n,, we con-

clude that G given by eq. (6.9) is real.

The time dependent solution is
[ >
olr;t) = J G, t30 6" ) ot ) A%

Therefore, with the above equation we can calculate p fromthe

knowledge of p at an earlier time.

W will now compare the behaviour of the system when the box
which contains the particles is situated in different regions of the

space. Translations in the y and z-directions do not affect the system
as the diffusion equation is invariant with respect to these disloca-
tions. W will therefore compare only two systems, one positioned at
the oriqgin and another shifted in the x-direction

We assume, for simplification that

;xl—le = ,yl-yzf = :’81—32, = sz

Let us estimate the smallest relaxation time for the system.

From eq. (6.6) we obtain:

680



assuming that

2

Lcl ¢§ de =1
To estimate the lowest o we take ¢2 = - then we have:
a 2x,
&y F2e,
L vk, k@) de -
Lo g
1
From where we obtain:
k2-k2) [ 1+(A +2)2
( 2 "3 -1 -1 5 273 1
o = k% + tan = (X,+2) - tan A ] log
3 2 s | 2 1+ )\?
)
where z,
A= -
1z,
For the box at the origin we have >\1 = -1 and
T
a=gki+ (1 -9 &
The lowest value is for k2 =0and k; = xl and we finally set
0
2
.- 4 x,
(4-m)

for the lowest relaxation time for the box at the origin. In this box
the system has a slightly faster tendency to be homogeneous in the -
-direction than the g-direction as the constraint in this region of

space predominantly inhibits motion in the z-direction.
For the box away from the plane x=0, we have

A >> 1

1
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W immediatly observes that the lowest mode is associated

with kX, = 0 and we get, for %k, = xj—
0

2 1
e T
xg 1+ (>‘1 + 2)
or

mi!l + (A, +2)%]

D 72

Here, the inhomogeneity in the y-direction has a tendency to persist
for a long time as compared with the previous case. The reason is again
the constraint, as, in this region of space, it predominantly inhibits

the motion in the y-direction.

This strong dependence of the relaxation time of the system
with respect to where we set the box signs to us that one should be ca-
reful with taking the thermodynamic limit in the case of non-holonomy.
tn general we have no uniformity of behaviour of the system in diffe-
rent regions of space and the relaxation of the system may come to be

forbiddingly high to guarantee uniformity of the thermodynamic I imit.

7. THE NON-LIOUVILLIAN CASE

Ve will now discuss eq. (4.7) when the constraint is non-1iou-
villian. W set

b, =gt A, ot (7.1)

T J

and we assume that

Thus, the equation for X takes the forrn

2 1 2] < s (7.3)
3q 3q”

&l
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where

sl =~ &, (5 (7.4)

ik
&
[y

Let us define the Green's function by

1 3 77 n
— 2= Vg @7 ¢lq,q9") | = "g-¢") (7.5)
7 ot g q,9 q-q

with the following boundary condition over the surface C enclosing the
- (%)
fluid

gt 26091 g5, - g .
BqJ v
For the function X we assume
153X Lo _ i
9 ;i do, = b" do, (7.6)

9q
as its boundary condition. in this way we are taking CI (g) tangent to

the surface Z. Under these assumptions we obtain

x(q) =J G (g,9")S(q) /g_dnq'+J G (g,q") /g_b’b(CI')dUi . (7.7)
Q )

Let us write

p = expy(q)

and

>
]

<
t

bas

Thus, eq. (4.7) takes the form

L2 5 d70 =2+ 5[ (7.8)
vg dq dq
where
SLR) =20 [ T A L0 X )
3" 37/ 8q 3¢’

(*) See footnote on page 675
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¢ take for )—( the same boundary condition as that taken for

G(q;ql)y i.e.,

0% X _da. =0 .

8q‘7 t
Therefore we have for >_((C7):
Ra) = %, (@) + | 2laa) 3@ G e (2.0)
where
)—<0(q) - JG(q,q') Tzi(?—')— g Vg dq . (7.11)
ql

Eq. (7.10) can be solved by the usual iterative method.

The equilibrium solution is thus given by

o, = const.exp(X + X) . (7.12)

Let us observe that, from the discussion of section 5, the
Green function G{g,q"') is uniquely defined apart from a constant. So it
is also x{g). The function )_( is also uniquely defined by the iterative
method applied to the eq. (7.10) and thus p , given by eq. (7.12), co-

mes to be known.apart from a multiplicative constant.

VW now turn our attention to the time dependent solutions of

the diffusion equation in the case of non-liouvillian constraints:

90 _ D3 [ (g 3 0
_——= QY — -b" p) . (7.13)
v Vg aq" ’ 8q”
We write
olg,t) = olg,t)e,(q)

o
If
®

and
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With these definitions we may rewrite eq. (7.13) as

3p 1a iJ'SﬁJ < 3p
=D = —— U QY == + vV = . (7.14)
¥ [“ | 3¢ 3q"
V¢ observe that
i
3_{ my") =0
9q

it is another form of saying that p is the equilibrium solution

The boundary condition for p(q,%) is obtained by imposing
that no current flows through the surface C of the container and we
must have

8 ) oy -
BqJ

or, equivalently

7 3 45 -0 . (7.15)
BqJ v

Let us now consider the vector space of the functions defi-

ned in the volume £ with normal derivative at the boundary C satis-

fying eq. (7.15). In such a space we define the operator
H=H, +H
with
_ 1 3 Ld
Hf =-o _"[H Qmi} (7.16)
Hoagt 3q?
and q
Bf = -#%‘% . (7.16a)
q

We observe that H, and H, are hermitean and anti-hermitean

operators respectively.

To construct the Green's function for H we will consider the

bi-orthogonal basis generated by H and its adjoint H+.

Let us call foz the eigenfunction of H corresponding to the

eigenvalue o©o. W have
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Hf, = of, .

In general a will be a complex number. In this case f(’; is the

eigenfunction corresponding to the eigenvalue a* and we have

*=
fa a* ’

. +
Because of that, the spectrum of H is the same as the spectrum of H and

(%)

+
to every fOL there corresponds a f'a such that

+ +
Hf, = of

W further have
jf;fa,u A% =0 if o#fa
and we normal ize these functions by the condition
Jf(‘;j&u a% =1

The Green's function satisfying the following equation

[ g_t + DHJG(q,q' t-t') = §Mg-q") 8(¢t-t")

-Da(t-t') +
T e F AV lg") for t 2 ¢!
o @ re (7.17)
0 for t < ¢!

o0
i

its is a simple rnatter to show, from the fact that compliex eigenvalues
alwaysoccurs is conjugate pairs that G (g,q';t-t'), defined by eq.

(7.17), is a real, non-symrnetric function with respect to exchange of

q by q'.

(*) See, for example, P.M.Morse and H.Feshbach, Methods of Theoretical
Physies, Vol.l, MacGraw-Hill Book (N.York) 1953.
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The time dependent solution p(g;t) is

2(@5t) = 0y (@) | Glaa"i00pla" s 000, (4" 5 dq.
We should observe that the non-hermitian character of thedif-
fusion operator ¥ may lead to unexpected behaviour of the system. I f
the imaginisry parts of some eigenvalues of # are larger than their cor-
responding real parts, the system, exciting these rnodes, comes to equi-
lTibrium through an oscillatory behaviour, unusual in the transient be-

haviour for diffusion.

8. AN EXAMPLE

To illustrate the formalism we consider a simple exarnple of
non-Tiouvillian systems. Let us consider the three-dimensional eucl idean
space and let us introduce toroidal coordinate (r,0,0) by the following

transformation

x = (a+ rsind)cosd

{a + »sind)sind (8.1)

<
]

n
il

r cos¢

\Je take for the surface of the container, two tori defined by

r=r,andr =r, and we will assume

a>r >r,
0

W will set D, the diffusion coefflcient, equal to unit.

For the constraint we take the form:

w=adr + Alrdd + {a + rsing)de) (8.2)
where
(r-rl) (r-ro)
A =——— (8.3)
(r,-r,)?

The choice of A given by the previous equation makes the cons-
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traint self-confining in the sense that the surfacesr =r, and r =r,
are natural boundaries for particles moving between these two tori as
the field ai is everywhere normal to these two surfaces. To see this
better let us first introduce the metric in the toroidal coordinates.We

observe that
dx® + dy? + dz? = dr? + »2de? + (a + rsing)? do? ,

and we therefore set

0 0 (atrsing)?

where the indices (1,2,3) corresponds to the (dr,d$,d9) directions res-

pectively. W also have

(ai) = A (a,Ar,Ala+rsing))
and

ata. =1 =A% (a® + 24?%)

from where we obtain

1

Ja?+2A2?

A=

At the surface of the container, where A = 0, we have
(@) = (1,0,0).
7

To calculate (b.) we use the formula

L, 1da. Ja .
b.=al |—-—L
7 8q‘7 Sqt

which avoids calculatinag the affine conexion. On the surface of thecon-

tainer, we obtained:
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1

L}
w3

(0, r, a+rosin¢) for »

(=)

(p =» )
by =« o
7

_r (0,'r1,'(a+rlsin¢) for r
alr;-r))

I}
-

As (bi) is tangent to the surface of the container, @ satis-

fies the boundary condition

':331:0 and p=ryand r =r
ap

1

If one would calculate the divergence of (bi) in the bulk o"
the fluid one would find it to be different from zero, what would say
that ¢ is not constant over the volume of the system. We cannot calcu-
late the divergence of ¥ in the d¢ and d directions on the surface un-
less we solve its equation explicitly. To get an idea of the solenoi-
dal currents on the surface of the container, we observe that Q¥ s
the identity operator in the tangent plane of these surfaces and we

have

forr =1r

and

(a+r sind)
0 + XN for r = r .

Yo 25—
a(ro-rl) ae
Because (ai) does not depend on 6 we may assume that ¥ is also inde-
pendent of 8 and
{a+r,sing)

R S — forr =r

alry-r,) 0

what shows that there exists, in this example, a permanent solenoidal
current in the opposite directions of d6, everywhere on the outer sur-
face of the container. On the inner surface, this current is in the po-
sitive direction of de. W also have a current in the negative d¢ di-

rection on the outer surface whose circulation is given by
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%Y¢d¢=-

Such an example should be easily simulated on computers and

the solenoidal currents observed.

9. CONCLUSIONS

W have stabilished by two different approaches the diffusion
equation for non-holonomic systems. W have also specified the procedu-
res for solving it for both liouvillian and non-liouvillian systems and
discussed the equilibrium and transient states of such systems. With
these results we believe that, unless microscopic physical systems with
non-holonomic constraints are found in nature, further development of
the theory here developed is pointless. W have even suggested in the
introduction, where we should look for such systenis in nature. However,
two aspects of the theory seen to us worth while pursuing its develop-
ment. One is the probability of classifying the constraints, let us say
in three dimensional space, by applying group theoretical considerati-
ons. W have in mind a development somewhat similar to the applications
of homotopy theory to crystal defects®. Though we believe that the si-
tuation here is complicated by the lack of translational invariance of
the non-holonomic structures. The other direction is tha large A? 1limit

which cannot be reached by the method here presented.

We would like to thank Dr. M. Abud for many stimulating dis-

cussions.
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