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The Moldauer-Simonius theorem, that relates the modulus of
the determinant of the average, optical, S-matrix, to the average width
and spacing of the compound nucleus resonances, is generalized to the
multiclass resonances situation encountered in pre-equilibrium reac-
tions. Corrections to the generalized M/S theorem are seen to be con-

nected priniarily to the width distribution of the widest doorway class.

0 teorema de Moldauer-Simonius, que relaciona o médulo do de-
terminante da matrfz S O6tica média a largura média e ao espagcamento das
ressonancias de nlcleo composto, é generalizado a situagdao  encontrada
an reacdes de pré-equilibrio. Corregdes ao teorema M/S generalizado es-
tdo associadas primariamente a distribuicdo de largura da classe

""doorway'' mais larga.

1. INTRODUCTION

The recent upsurge of theoretical interest!”® in multistep
compound processes has brought into focus several important questionsre-

lated to the statistical theory of the compound nucleus.

One particular aspect of the statistical theory, namely the

distribution of level widths, P(T)}, has recently been discussed by se-
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veral auth0r54-7, in connection with the conventional, one-class of
overlapping resonances, model of the equilibrated compound system. It
was discussed in Refs. 7 that the S-matrix auto-correlation function,
CS(E), should carry some inforrnation about P(I'}). However such informa-
tion would be experimentally difficult to desintangle. The calculated
¢®(e) with a specific P(I') was found to differ little from the one-pole
approximation to Cs(e), as long as the correlation width, reerr was
identified with D Tr P where D is the mean level spacing and £, the

2m
optical transmission matrix.

Clearly the above questions become even more subtle in the
case of multi-class resonances, model of pre-equilibrium processes,sin-
ce, as was demonstrated in Ref.3 the fluctuation cross-section and the
S-matrix auto-correlation function are not simply related. The relation

. . P . '8
is implicit, in the sense c{i, =2z Of and Ci@,(e) - %O\chc'“ﬂ.rcin'

n m,ec'
and therefore Cgc,(€)/0£f,5Fm,(€) depend on the channels. This makes the
discussion of the Pn(l"n) through considerationsofthegeneralized cross

-section auto-correlation function more difficult.

Another quantity of theoretical interest which involves ex-
nlicitly the consideration of the level width distribution, is the ave-
rage amount of absorption present in the system, and its relation to
T /p. This is gquantitatively described through a relation involving the
modulus of the average (optical) S-matrix, éand the ratio I/D . This
relation carries the name of Moldauer-Simonius (M/S) theoremS.

It would be quite instructive to generalize the M/S theorem
to the case of multistep compound processes (MSCP). This generalization
would help in furthering our understanding of the role of the level
width distribution of the different classes of doorways, in fixing the
degree of absorption in the system and accordingly in relating observa-
ble physical quantities such as ?~ to the inherently unobservable avera-

ge doorway widths.

In the present paper, we demonstrate that the generalization
of the M/S theorem to MSCP involves very simply the consideration ofthe
ratios I_‘n/Dn. Further we show that in the limit of the well nested se-

quence of doorway classes discussed in Ref. 3, the first correction to
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the M/S theorem involves the width distribution of the widest width

class of doorways.

The paper is organized as follows: In section 2 the M/S theo-

rem is discussed in the context of MSCP. In section 3 we introduce a

particular explicit form for Pn(Pn) and accordingly calculate f‘n which
are needed to obtain the corrections to the M/S theorem. Finally in
section 4 the consequences of the generalized M5 theorem are discussed

and several concluding remarks are made.

2. THE MOLDAUER/SIMONIUS THEOREM FOR MSCP

In its original form, the M/S theorem valid for a single class

of overlapping resonances system reads

Re &n det.§=-'lTF/D (1)

Though Eq. (1) relates the modulus of the determinant of é to T/D, one
may obtain the corresponding relation for l(é)ecl in the case of mequi-

valent channels
IEI = exp(~m T/mD) (2)

Upon insertion into the unitarity relation, this gives the following

value for the transmission coefficient P
P =1 - exp(-21 I/mD) (3)

In the more realistic case of non equivalent channels, simple relations
such as (2) and (3) are not obtained. Nevertheless qualitative state-
ments containing similar physics as in Egs. (2) and (3) may be made as

done in Ref. 9.

To generalize the M[S theorem to the case of N classes of
overlapping resonances, we start with the usual sum-over-poles form of

the S-matrix
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g g
§S=B-1 ] — ()
muE - E, o+ AT, /2
+

where R is the, unitary, background matrix, BB = |.

Since the sum over classes, I , is just another label, it may

be considered on the same footing as u.

The background-plus- sum-over-poles representation of S given
in Eq. {4) may not guarantee the absence, in the energy-averaged cross
section, of terms connected with the interference between compound

(fluctuation) and direct processes.

One may, however, construct an alternative form for S where
these interference terms average out to zero. This was explicitly done
in Ref. 3 using the optical background representation of Kawai, Kerman
and Mc\/oy“’, appropriately generalized to the multiclass resonances ca-

se. For our present purposes, however, Eq. (4) is more appropriate.

The average S-matrix, S, (average over an energy interval 1),
may be obtained from (4) by merely adding to the imaginary part of the

denominators, the factor |—2-

V¢ the obtain the following for the determinant of s

., E-FE + T2 - 1T /2
det E = det :g =ez'1¢ I n,}l 7, U
- nw F - E . I/2 > T 2
nep n,u+z /2 + T n,u/

where

o
¢--2"—det B

Ve consider now the real part of the logarithm of Eq. (5), which may be

written as

- 2 (E 2}/E - E +i I
[l L(n,u/ \¥4 nu /2

Re %n det § = fnldet 3| =Re | #n

n’u L

1 +72 (I‘n,u/z)/E - En’u + 1 I/2
(6)
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Expanding (6) in powers of X, , =
s H - i
E-E, +i 172

we finally obtain

° 2 am,
lnldet 3;[ = - Z _..]__ [.%I} X n,uz - (7)
J=0 (24+1)! n (B - En 11) + I/4
The sums
25+1 25+1
(272) (T, ) )T e .
2 2
u (E- En’u) + I°/h D,

define the average of powers of the width I‘n =

. 4 - < > .
Calling I‘n I‘n e we then write

s

B N _ ® , ; 2y <p2dtly
oot 1 - 1o -0 Lo o] ] T
n2l T G2 (254) el D

Equation (9) is the principal result of this section. To continue fur-
ther, we have to specify the distribution of level widths P (T ) which

are needed to evaluate <I‘2‘7+1

> « W might mention that if the assump-
. n,u M
<F2'7+]>

tion that —nbu—“ independent of the averaging interval WM _is made,
n
then we obtain immediately the simple generalization of the M/S theo~

rem

det 8| = - (f,/p.) (10)
|det 5| exp[n 1 ]

where the sum extends over all doorway classes
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3. THE LEVEL WIDTH DISTRIBUTION AND THE CORRECTIONS TO
THE M/S THEOREM

#2657 have discussed the distribution

Recently several authors
of widths of overlapping resonances. Most of these studies result in a
numerical histogram distribution which is not convenient for analytic
discussion. In Ref. 7, however, an attempt was made to actually cons-
truct P(I') subject to several constraints motivated by'unitarity, the
uncorrected M/S theorem, Eg. (10) and an expression for the coherence
width of Ericson fluctuations obtained from an analysis of the S-matrix

auto-correlation function

corr -1 -2
=< "> /< ™> H
I u U/ Hou an

The distribution P(I') was then constructed by use of the maximum entro-
py condition subjected to the above three constraints. The resulting
P(I') has the form

corr -
p(r) = exp[‘ (0.429 + 1.25T + 0.16 [T = - %J_’] (12)

where the numerical factors appearing in Eq. (12) were foundbytreating

the 20-channel example discussed by Moldauer",

Although P(I) of Eq. (12) fits very well the numerically ge-
nerated histogram, it is quite cumbersome to deal with in analytical
studies. For the purpose of evaluating the corrections to the M/S ex-
pression, Eq. (9), we therefore use a simplified version of P(T) which

guarantees the finiteness of I°°T as defined in Eq. (11).

r? )
pry =22 L[I° o[- 51 (13)
2 T T
with P(T) above, plotted in Fig. (1), the correlation width calculated
using defining equation (11), comes out to be
[COrT _ T3 (14)

This is chose to the value extracted from Moldauer's histogram4.
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Fig.1 = The width distribution P{T') x Zif T plotted vs. I/, The arrow
indicates the correlation width IO = <P >/<I™%,

To further exhibit the reasonableness of our distribution,
Eq. (13), we calculate below the ratio of the S-matrix autocorrelation

. % . 7
function to Gé,for the single class resonance case ',

Cgc’(g) 1 -1 -1
Z2 e—— > <T >
03”2' I’u + 1€ U u u
ce
= - (3e/T) exp(i3e/T) E,(¢3e/T) (15)
- % 3¢/T
+ 1

where El(x) is the exponential integrall'. The closed expression for
s %
Cop1(€)/0,,1 given above has the correct behaviour at €=0 (=1) and e=®

(=0).

In fig. (2) we show the cross-section autocorrelation  func-
. s 2 . =
tion Icac'(s)/OZc'|2 , plotted vs. the quantity 3e/T, The extractedcor-

relation widthis - %% , slightly larger than that given in Eq.  (14),

For comparison, we also show the results obtained with the one-pole ap-

proximation to Cgc,(s)/cfﬁ, i.e. Fcorr/rcorr + Ze , with reerr obtai-
(&4

ned from the exact result, Eq. (15). It is clear that the one-pole ex-
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Fig.2 = The Cross-section auto correlation function, Eq. (15}, plotted
vs. 3e/T (solid curve). The dashed curve represents the one-pole ap-

proximation to C{ ).

pression approximates very well the exact one in the small-E region. Of
course this is the region accessible to unambiguous experimental stu-

dies.

The above findings agree with those of Ref.7 where P(I') of
Eq. (12) was used. Further, the result of our calculation shown in Fig.
(2) are quite close to those of Ref. 7, indicating clearly that our

approximate P(I'), Eq. (13), is quite reasonable.

Having thus given arguments to justify the formof P(T) em-
ployed here, we turn now to the calculation of the corrections to M/S
relation, Egq. (10). We assume similar width distributions for all clas-

ses of overlapping resonances, obtaining thus

<r, )P L L ()2 (16)

el o3t

where we have purposely inserted a possible I|-dependence in I‘n. Inser-
ting (16) into (9) we finally obtain

- 27+1
N I“n(I)

=1 Dn =1 (3)23+]

(F (1)

_ © ) 25 W
fnldet S| = -m -;—Z (24+3) (27+2) [8 J

T n=1 D
n

(17)
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At this point we assume that the average widths, Tn , of the different

>

classes of doorways satisfy the nested conditions
Ty>>F, o>, .>»> T (18)

Further, to unambiguously define an average widthfor a given class, one

has to introduce a hierarchy of averaging intervals In’ such that

I, << I <T (19)
with 1, = |,
For convenience, we assume that the degree of ‘'nestedness'',
In/Im_] , is given by
In l“n
= (20)
In+l I’n+1
With the above assumption, the averaging interval |, which is, by as-

sumption, larger than all widths, is written as

r

IT=x~ I =ao I (21)
Fn' n n )

HI

With the help of the above assumptions and definitions, we may now write

Eq. (17) in a more natural form

_ ¥ T
fn |det 5] = -1 ) =
n=1 7
. y 25 7241
Z o 2541 nsl o2 T, b,
(3) 7

As a result of the nested-doorway condition, Eq. (18), @, >> 1 and the-
refore of all terms appearing in the #-sum of Eq. (17), n=l would give
the dominant contribution. To lowest order in the I-variation of I‘1 we

obtain finally
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- 1
fn|det S| = -~ m a_IJ 7 (23)

Equation (23) is the principal result of this paper. It sup-
plies the measure of absorption in a nuclear reaction, due to multistep
compound processes. it also dictates how the width distribution of the
resonances enters in the determination of the average, optical S-matrix

in terms of the average resonance parameters.

Though Eg. (23) deals with det §~, one may obtain a similar
relation for the elements of :‘5‘; in the idealized case Of m equivalent
channels coupled equally to all doorway classes. Ignoring the correc-

tion factor in Eq. (23), we obtain

" N f.
= _ _ n
5l =exp -1 | —5 J (24)
- n=1 n
from which the transmission factor PC = 1 - |§ﬁﬁ|2 is obtained imnedia-
tely
r ¥ oI "}
P_ = 1-exp L— 27 ) — (25)
n=1 n |
Dn m
Assuming — >> 1, and summing over ¢, we find
§
ln B
N I‘n
P -JE=RL D S— (26)
e D
e n=1 "

Since in the limit,

>> 1, considered above one expects the corre-
n
lation widths to coincide, with the average widthl, we may rewrite gq,

(26) in the following form

(27)

Equation (27) is a sum rule relating the trace of the optical
transmission matrix, obtainable from optical model analysis, to the cor-

relatlon widths extracted from Ericson fluctuations analysis. The sum
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* in connection with

rule above has recently been discussed by one of ust
preequilibrium reactions. W view our discussion above as a further sup-

port to the conclusions reached in Ref. 14.

4. CONCLIJSIONS

In this paper we have generalized the Moldauer/Simonijus theo-
rem to the multi-class resonances situation. In the course of assessing
the nature of the corrections to the generalized M/S theorem, we have
examined the distribution of level widths of the different classes of
doorways. it was found that in the limit of well-nested doorways, the
first, and presumably dominant, correction to the generalized M/S theo-
rem, involves the distribution of the level widths of the widest class

of doorways.
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