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We show that integral representations and additions theorems
for the product of confluent hypergeometric functions can be obtained

by means of isotropic harmonic oscillator Green's function.

Obtém-se representacdes integrais e teoremas de adi¢gdo para um
produto de fungdes hipergeométricas confluentes utilizando-se a funcéo

de Green para o oscilador harménico isotrépico multidimensional.

1. INTRODUCTION

In the present paper we show how to use Green's function inor-~
der to obtain integral representation and addition theorems for conflu-
ent hypergeometric functions. To be able to do that we use the radial

Green's function for the N-dimensional isotropic harmonic oscillator.

The N-dimensional isotropic harmonic oscillator Green's func-
tion can be put in an integral representation in many ways, in particu-
lar by using the generalized Mehler formula for Hermite polynomials® or
by a quantum mechanical derivation exploiting the U(¥) symmetry of the

isotropic harmonic oscillator Hamiltonian?.

* With a FAPESP-SP, Fellowship.
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The radial Green's function, in an integral representation,
can be derived from a partial wave expansion of total Green's function.
A representation in terrns of product of two Whittaker functions can be
derived from the Sturm-Liouville method®. These results are used to de-
rive integral representations and addition theorerns for the product of

two confluent hypergeometric functions.

2. WHITTAKER'S FUNCTIONS

The Green's function for the N-dimensional isotropic harmonic

oscillator satisfies the following differential equation
2 2 >
{- R E] V@, 75E) = - 8(-2) (1)

where VAZ] is the N-dimensional Laplacian operator.

The solution of this differential equation can be obtained
through the spectral decomposition in terrns of harmonic oscillator wave
functions and by using a generalized Mehler formula for the product of

Hermite functions'®
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The solution in a closed integral representation is
N> 1w MW 2
G (Y’,l’" ,A) = % {_TTE exp <—2—h— 74y’ )} .
1 > > Fo >
~AN/2 - 2 .r' !
.Jdiiw/ boa-ey e p{% {Z”a-f’”’ azJ} (3)

1-¢&2 1 - g2

where A = E/Aw, for r'>r and Re(=A+N/2-1) > 0.
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We can calculate the radial Green's function if we expand
N
(

C ;,;‘;)\) in terms of partial waves. This can be done by expanding
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expl2rr'&/(1-£2)-cos6} in a series of Neumann type®. The radial Green's

function is given by

Gg(r,r';k) = 2 (ppt) W24 exp { -% (;25'2)} .

1

= >y > )
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with r* > r and Re(Z +-§- -1) > 0 where Iu(x) is the modified Bessel
function. This radial Green's function satisfies the following diffe-

rential equation

1-N
2 " _
Al + E-l 4 _ M—Q— - r2 + 22 Glg(r,r‘;k) = (mﬂ‘)T §(r-r')
dr? r dr »?

(5)

We can aiso determine the solution of this differential equa-

tion by means of the Sturm-Liouville method in terms of the product of
two Whittaker's functions?®

R R NG (1) (6)
77 ) 3y G-

. N, L_A 0

with »'>» and Re Tt 572 >

W can introduce parameters y4 = g +L-1andv 2% and make

. . -1
one variable change in eq. (4) & ° = cth v/2 identifying with eq. (6).
W then have:

r-v+ Eh w @ v (@) -
+ = v; v;%r

N

= (I’I")I/-vz J dv cch\) %exp {- —;— (r+r') ch v} Iu(/r?'_ sh v) 7)

0

with r* >r, Re(-v+ TH'T]) > 0 and Re(u) > 0.

As the Whittaker's function are analytical there is no loss of
generality by change of parameters. This is the usual integral repre-

sentation for the product of two Whittaker's functions?®.
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W can also determine one addition theorem for the product of
two Whittaker's functions by introducing the following Hille-Hardy for-

mula for the modified Bessel functions in eq. (4)

(1-52)'1exp{§i‘i‘-.”—+”—'] T [z/;:;r 3 J=

Ez'l 2 J u ‘_EZ
-1/2 ¢ (pn+1) "“%
oD B R O L R CA I ()
n=0 T (n+1) n+”2 it n+9—r;u

(8)

Integrating over the & variable, we have the following result:

D(-var 5) My ()7 (1) =

-- ] L f@uel) oy mw e (9)
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with 7' > 1, Re(~v+p+ %—) >0 and Re(u) > 0.

3. PARTICULAR CASES

Functions such as Bessel and Kummer are particular cases of the

Whittaker's functions.

The Bessel function is a particular Whittaker function® when
V=0
M. (2) = T(+p) 22¢ zl/z_ru(z/z)

O;u .
(10)

_.m1/2 1/2
WU;U(Z) =T z KU(Z/Z)

The integral representation for the product of Bessel function

|u(r) and Ku(r') is
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Iu(r)Ku(r') = Jo dv exp {-(r+r')chp} IZM(W shy) (1)

with r*>» and Re(u *t 1/2) > 0.

The corresponding addition theorem is:

(zﬂr')l/2 Iu(r/Z) Ku(r"'/Z) =

1 T'(2u4n+1)
ntu+1 /2 T(n+l) n+U+1/2;51u

|
~18

(r) (»') (12)

=0 Mn+u+l/2; u

with r*>» , Re{u+1/2) > 0 and Re(u) > 0.

Kummer funct ions are related to Whittaker functions by means

of the Kummer transformation®

j'f}i 1+

., 2/2 - . .
I‘(I+u)M\);u/2(ac) =g x N (-v+ -5 1+ x)
T4 (13)
_ mx/2 2 _ T+, .
W\);p/z(:c) =e x Ul R LI T x)
; ; _ 1+
Iritroducing the parameters -v= —5-=a and 1+u = ¢ and by

using eq. (7) we have for the Kummer function the following integral re-

presentation:

L1}
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(14)

where Re{a) > 0, Re(e-1) > 0 and r* > r. W note that these two restric-
tions on parameters are the usual restrictions to define the Kummer func-

tion.

The corresponding addition theorem is
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T(e)T(1+2u) [ F (os1+215r) Ulp;l+u;r') =

e 1 T(n+l+2p) ) ) .
) nZO np T(n+T) By (s 1e2us 2) Py (ons142057) (15)
where we define ¢ = -v+#i+1/2 and with r' >r.

In order to complete the discussion of confluent hypergeome-
tric functions we also present integral representations for Hermite and

Laguerre Polynomials.

In this case we only need to calculate the residuum of the
isotropic harmonic oscillator Green's function for a defined value of

energy.

In the one-dimensional case the residuum of the Green's func-

tion is the product of two normalized harmonic oscillator wave functions

Res G (x,&';}) =¥, (%) ¥*(z*) (16)
A=n41/2

A single residuum calculation of eq.(3) shows that
/’ ' _ . -1/2 1 2 2
Res % (x,z';A) = exp - % (x4 %) &,
A=7t1/2

{
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with ' >x and Re(®1) > 0. The integral representation for the pro-

duct of two Hermite polynomials is

-n
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where X' > & and Re(n+1) > 0,

616



For the Lagrange polynomials we can calculate the residuum

of the b'i-dimensional Green's function as follows:

> > =1 ’_ 1 (3")2+3">'2)}
Res 7 =L ew -
A=N+]
- _ >y >o 2
L § a3 ey exp{zr'r £ - —= 52} (19)
2mt ]_5;2 ]~ Ez
£=0

with 2' >7 and Re{(n+3/2) > 0

In this case the residuum of the Green's function is given

by

Res G, 7550 V7 v m(?)wz m(?') (20)

A=n+] 2k+|m|=n

where %k is the radial quantum number and m is the azimuthal quantum

number. Using the wave function in polar coordinates® we have

% T(k+1) ( imi 3m| im z e?:fﬂ((b‘(b') (21)

EyA ml=n T (k+|m|+1)

b

and use the constraint k = % - ]mi we get,

If we expand exp. {2r cos(9-0')} in a Bessel series’

TE-m+ 1)
2z (rr' LZZ (r?) LZ (r'?) =

)m
F(%-]) z-m 5 - m

_ 1 - (n+3/2) -1 2rr'§ » 4pt 2
= —Z-TT{ ; d€ E (]'Ez) Im ]—_-Ez— exp { - z;—_—gz—- Ez } (22)
£=0

with »'>r, Re(n/2 - m) > 0 and Re(n/2 - 1) > 0.
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The integral representation in eq. (18) can also be derived

directly from the generalized Mehler formula.

We note that the generalized Mehler formula can be used to
calculate the time-dependent isotropic harmonic oscillator Green's func-
tion, if we change & = exp(Zt) and multiply both sides of eq. (3) by

N .
exp(%3), thus getting

-N/2 @ -i(v+£v-)t
m T e 2 ) v (e )Y (@)Y ()Y (@) =
v, Ty W ety Wty W
v=0 VY, V=Y 1 N N
= (27 sint)-lv/2 exp {- ET%E E:o;' - (#247'2) cos t]} (23)

which is the time-dependent isotropic harmonic oscillator Green's func-

tion.
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