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M. CATTANI and N. C. FERNANDES

Instituto de Fisica, Universidadede S&do Paulo, Caixa Postal 20516, SP, Brasil

Recebido em 1/8/82

W have performed, within the framework of the ordinary quantum
mechan ics, a detailed study of the energy eigenfunctions of N identical
particles using the irreducible representations of the permutation group
in the Hilbert space. It is shown that the para-states, as occurs with
the boson and fermion states, are compatible with the postulates of quan-
tum mechanics and with the principle of indistinguishability. This paper
gives a mathematical support for the existence of para-bosons and para-
-fermions and justifies, in a certain sense, Gentile's quantum statis-

tics.

Fazemos um estudo pormenorizado, dentro do formalismo da meca-
nica quantica ordindria, das auto-funcdes da energia de N particulas
idénticas, usando as representagdes irredutiveis do grupo de permutacgdes
no espago de Hilbert. Mostramos que os para-estados, assim como ocorre
com os bosons e os férmions, sdo compativeis com os postulados da meca-
nica quantica e com o principio da indistinguibilidade. Este trabalho
fornece un suporte matematico para a existéncia de para-bosons e para-
-férmions justificando, de um certo modo, a estatistica quantica de Gen-

tile.

1. INTRODUCTION

About four decades 'ago Gentile' ? invented, without any quantum
-mechanical or another type of justification, a parastatistics. He has

obtained a statistical distribution function for a system of N "weakly
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interacting'' particles assuming that the quantum states of an individual
particle can be occupied by an arbitrary finite number d of particles.
The Fermi and the Bose statistics are particular cases of this parasta-

tistics for d = 1 and d = ®, respectively.

Ten years later, Green“ has shown that in quantum field theory,
the para-Bose and the para-Fermi quantizations, considered as generali~
zations of the Bose and Fermi quantization, were theoretically possible.
After this, many paperss_ * have been written about the para-particles in
the domain of the quantum field theory. Messiah and Greenberg!! have

also analysed this problem from the usual quantum-mechanical standpoint.

In this work we perform a detailed study, in the ordinary quan-
tum-mechanical approach, of the energy eigenfunctions of ¥ identical par-
ticles using the irreducible representations of the permutation group in
the Hilbert space. Analysing these energy eigenfunctions we arrived at

the following conclusions:

1) The para-states, as occurs with the boson and the fermion
states, are compatible with the postulates of the Quantum Mechanics and

with the Principle of Indistinguishability.

2) In the 1imit of weakly interacting para-boson or para-fer-
mions, the occupation number d, for the quantum states of individual par-

ticles, can be an arbitrary finite number.

This analysis, which gives support to the mathematical existen-
ce of para-fermions and para-bosons within the framework of quantum me-

chanics, justifies, in a certain sense, Gentile's statistics.

2. THE IRREDUCIBLE REPRESENTATIONS OF THE
PERMUTATION GROUP IN THE HILBERT SPACE

Let us consider an isolated system, with total energy, E, com-
posed by a constant number N of identical particles that 1is described

by the particle quantum mechanics.

If H is the Harniltonian operator of the system, the energy

586



eigenfunction ¢, that obeys the equation H) = EY , is given ¢ = ¢ (;1,
sl,...,ic’ ;:sN), where 50*7/ and si denote the position coordinate and the
spin orientation, respectively, of the ith particle. W abbreviate the
pair (Ei’s'i) by a single number £ and call 1,2,...,§ a particle confi-
guration. The set of all possible configurations will be called thecon-
figuration space E<N).

Tlie quantum states ¥ of the system composed by N identical
particles are described by tensors®? in a Hilbert space L, (e N ) of

. . ¥
all square integrable functions over E .

The permutations P, (2 =1,2,...,N!) of the labels 1,2,..., N

(m)

. . N
constitute the symmetric group S

(m)

of € of order NI To each Pi we

can associate, in a one-to-one correspondence, an unitéry operator U(Pi)
inthe L @),

Starting from the general substitutional expression for the

permutations Pi 13,

Tr=a1P1+a2P2+...+aN! PZV! (1)

where P1 = E is the identity permutation and the a, are numercial coef-

ficients, we construct the unitary operator U(m) such as
Umy =¥ =ay ¥, + ... + G Yy (2)

Now, It is well known from group theory that we can construct
N! linearly independent substitutional expressions of the form (1} and

that any substitutional expression can be written in terms of them.

V¢ associate to the linear operators p, P.,..., ina one-to

-one correspondence, a set of matrices H(Pi)’ H(Pi)""’ such that
H(Pi),H(Pj) = H(P'ipj)' This set is a representation of S(N) in e(N).
() ()

The representations of S in € are related to the parti-
tions of the number N. Any partition of N will be denoted by
[0‘1,%,..., Otk], where &, + o, + .., + & =N, with a, 2 0,3...2 O -
In what follows, when no confusion is likely to arise, we denote the

partition simply by (®). Of course, an irreducible representation of
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N . .
5( ) corresponding to a partition (a)of N is not unique, although all

such representations are equivalent. In this work we shall use the na-

tural representation.

Now we specify the ¥! linearly independent substituional ex-
pressions T that will constitute the basic set of units, in terms of

which any arbitrary substitutional expression can be decomposed.

The natural units, in an irreducible representation (&), of the

: ) , 13
symmetric group S are given by

gﬁz) = (176, iEz(aZ) ni:) (3)

where e(a) = N! /f(a), f‘(u) the dimension of the square sub-rnatrix as-
sociated to a given partition (a),Elﬁi) (r,t = ],2,,,,,f(a)) are conzz;
nient substitutional expressions to be defined in the sequence and Tlts
are the matrix elements of . The f‘(a) satisfy the Frobenius theorem

ey om
a

When ¥ € 4, the calculations are simplified and the equation
(3) can be read:

o2 = @) 5@ (8)

rs

Corresponding to any partition (a)of the number N, a certain
arrangement of N spaces, called a shape, can be const.ructed having
spaces in the first row, a, in the second an so on. By permuting the Il\l
positions we get N! different arrangernents. Each spatial arrangement is
called a tableau of the given shape. 0f the ¥! tableaux of the shape
(a) there will be a certain number f'(a) which have the property thet the
numbers in each row in each column are in crescent order. Such tableaux

are called standard tableaux. If, for a given partition (a),we define

as an element of the positive symmetric group of the rows

r

ofastandard tableau and Nt(u) as an element of the negati-
o

ve symmetric group of the columns, the E_,(,t) are defined by the product

Ez(nt = Plgu) Nt . This completes the definition of Elﬁ). To obtain the

o
natural units gys), given by equation (3), it is enough to calculate the

expressions EIS@), which is a straightforward procedure.



The one-to-one correspondence between T and U(m), defined by
equations (1) and (2), respectively, implies a similar correspondence
. o o .
between the units ng*s) and the wavefunctions ‘l’lf,s), that, in the natural

representation are given by

!
v @) _ «x){-z (@)
v = e ey (5)
Jg=t
o
where C( ) is a normalization constant, E}a) (r,s8) are coefficients that
assume the values 0, +] and -1, and the wavefunctions f‘l’l,‘l’z,..., \YIV' ]
are base-vactors in LQ(E(N)).
The tensors w(%) = @égq , Withr, s = 1,2,...,.7"'((1), are the
irreducible representations @) of S( in L,(E(N)). The wavefunctions
o
‘Vls,s), that obey the equation H‘l’l(,:') = E‘l’i_?, belong to an irreducible
sub-space (%) of Lz(e(m). The dimension of h(a) is (flo)).

Since the sub-spaces h(a) and h(‘B), with o # B8 are irreduci-

ble, the scalar product <‘P1£g)|‘l’7(5§)> = 0.

There areNtwo irreducible sub-spaces of special interest: (a) =
= (¥ and (@) = (1 ). Since in both cases f(a) = 1, the corresponding
sub-spaces are one-dimensional. The wavefunctions associated to them

are, respectively:

N:
¢ -t ] YT (®)

: =1

]

(" PR
¥, = (/) L 8, ¥.=Y¥ (7)
s J
=1 7
where c‘SP =+1, if Pj is an even or an odd permutation, respectively.
J

There are only two one-dimensional sub-spaces. In the remaining
sub-spaces h(a), with dimensions going from 22 up to (N—I)2, the func-
tions ‘l’r(,:) are symmetric with respect to some permutations, anty-symme-
tric with respect to others and have an indefinite symmetry with respect

to the remaining ones.

To illustrate the above results, we consider the simplest non
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3
trivial case of N=3, In this case the dimension of L,(e( )) is N =6 .
Indicating by [¥,, ¥,,...,% ] = «(123), x(132), u(213), »(231), u(312),
u(321) the base vectors of L (¢ : ), the wavefunction ‘YI: = ‘1’3 that

belongs to the sub—spaceh(a), associated to the tableau [T ]27]3] is

given by:
1/2 .
¥, = (1/6) (2(123) + u(132) + ... + u(321) _(8)
3
The totally anti-symmetric function ‘¥A = ‘{f](} ), associated to
the tableau | is written as
2
3

¥, = /6% w(123) - w(132) - u(213) + u(231) +
+ u(312) - u(321)) (9)

Besides these two one-dimensional sub-states there is only one

sub-space, with dimension 4, which is associated to the tableaux [ ZJ
| 3
and [1 {3 ] . The wavefunctions corresponding to this-space are:
2
Yoo= (172) @(123) + u(213) - u(231) - u(321))
Yy, = (1/72) ((132) - u(213) + u(231) - »(312))
(10)
¥y, = (1/72) (u(132) - u(231) + u(312) - u(321))

u(312) + u(321))

B
i3

2o = (1/2) ((123) - u(213)

These functions, as one can easily verify, obey the properties

of symmetry cited above.
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3. BASE VECTORS OF THE IRREDUCIBLE SUB-SPACES # (%)

o . .
Since the ‘Yis) (r,8=l,2,...,f(a)) forrn a set of linearly inde-
pendent functions in & o we can construct by an orthonormalization pro-
cess, the base-vectors of the sub-spaceh (a) which will be denoted by

the column vector Y{(®):

{yl(a)
¥a) = (107 iyz(a) (1)
2@
where T = (#)2 is the dimension of h (¥,

The base vectors of the one-dimensional sub-spaces are given
simply by J.’A = ‘VA and YS = "YS , Where ‘YA and ‘PS are defined by equations
{6) and (7).

We will show now that all physical properties of our N-particle
system represented by a given sub-spaceh @ can be obtained by using
the base-véictors Y{®) satisfying both the probabil istic interpretation

of quantum mechanics and the principle of indistinguishability.

()

A given perrnutation P of the particle in € is represented

by an unitary operator U{(P) in Lz(e(m). Thus, under the permutations,

the base-vectors Y(a) €h & s changed into a vector X(a) €h () given
by X(a) = U(P)y(a). This permutation operation can also be represented
by an unitary matrix Ta:X(Ol) = Ta Y(a). Since the irreducible sub-spa-

ces are equlivalence classes'™ different sub-spaces have different sym-
metry properties which are def ined by I, matrix. This means that if
(o) (8) .
Taeh and TBEh , results ’.T’OL#TB if a# 8.
For the one-dimensional cases, since XA = U(pP) ‘YA = - YA and
Xg = U(P) ¥4 = 4, the T matrices have only one component To= -1 and
TS = +1.The permutation of particles changes the state-vectors only by

a numerical factor; X and Y belong to the same ray in the correspon-
ding sub-spaces. W see that the permuted state-vector X and the ori-
ginal one Y describe the same physical state, that is |x|? = [¥|2 This
permit us to interpret the permutation invariant function |¥{?® as the

probability density function.
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+
For a multi-dimensional h(a). since T T, = 1, the square modu-
lus of Y(a) is permutation-invariant, that is, ¥ (a) Y(a) =X (a)X (o).
r
So, for these cases, the function I¢(0')|2 = Y (0)¥() = PN IYi(“) | 2

can be interpreted as the probability density function.

We note that for the one-dimensional cases the symmetry pro-

perties of Y are very simple because T = *1, whereas for the multi-di-
o

mensional % ), the symmetry properies are not so evident because they

are defined by TOL which has E“(a)jz components.

To obtain the energy eigenfunctions ou basic hypothesis was
that [U(P),H) = 0. Consequently, {:U(P), S(t):l = 0, where S(t) is the

time evolution operator for the system.

The expectation values of an arbitrary Hermitean operator A =
= A(1,2,...,N) for the energy state-vectors Y(a) and X (a) are defined
- T -
by 4, = <¥(a) [4]¥(a)> = (1/1)  C <¥.(a)[4]Y (e)> and 4 =<x(0) [4]X(0)>=
Y i = 7 Tz

. =
(i/1) L <Xj(a) [A{Xj(a)>, respectively. Since X{a) = TY(a), we see
J=1

that Z, <x(a)]Aa]x(a)> = <¥(a) |T: A Ta|Y(0L)> = <v(o) |4|¥(a)> = 4,
plying that [U(P),A] = 0. Moreover, if U(P) commutes with S(¢), the re-
lation [U(P),4(¢)] = [U(P), sT(£)4s(¢)] = 0 is satisfied. This means

that /Ty(t) = A—X(t) at any instant of the time. This expresses the fact

im=-

that since the particles are identical, any permutations of them does
not lead to any observable effect. This conclusion is in agreement with

the postulate of indistinguishability!?.

In the limit of weakly interacting particles let is indicate

by o,8,v,... the individual states that can be assumed by the particles.
So, writing the base vectors |‘l’7/| (£=1,2,...,N!) of L7(€(N)) in the
form ‘Yi(m,n,p,...) = ua(m)us(n)uY(p)..., one can determine the maximum

value _cj for the occupation number of a given state. W verify that for

YS,d =N, which can be arbitrarily large, d = 1 for YA and d goes from

2 up to N-1 for the state-vectors Y{a) of the multi- dimensional sub-
o . . . .

spaces h( ). That is, for a system of weakly interacting particles, the

maximum value ﬁ_ for the occupation number of an individual quantum sta-

te can be d = 1,2,3,...,N. It is equal to the number of spaces a of
1

the first row of the Young shape that is associated to h(a).
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We must note that the general solution of the equation HY= EY,
cornpatible with the principles of quanturn rnechanics and the the postu-
late of indistinguishability of the particles, should be given by a li-
near superposition of the state-vectors Y(a):¥ = 8 Coc Y(a), where
are arbitrary numerical constants. This general eigenfunction should be
a column-vector with ¥! rows composed by the colurnn-vectors Y(@), each

(r)y2

one with rows.

To illustrate this section we return to study the case of N =3,
To sirnplify the notation we write the set of linearly independent func-

tions Lyrs’ defined by the equation (10), as a "colurnn-vector" [X]:

Lyll

‘{/12

Bd =y (12)

21

‘}’22

\

The base-vector Y of the 4-dimensional sub-space, constructed

orthogonal izing [X] is given by the linear combination of the \yrs:

] 0 0 0 ) [w“
1773 2/Y3 0 0 ¥
R R S T V2 B v, | SK

-1/v3 -2/3 2/3  4/3 ¥,

Applying an arbitrary perrnutation P, the set [x:] is changed

into a new set [X'] :

@« B 0 0 v,
Yy & 0 0 Yo,
i — = 'P
Ix'| 6 0 o 8 v, x|
o o y o Y22
Indicating by Pi (Z=1,2,...,6) the corresponding permutations, we get
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o =1, B =0, Y =0 and 6 =1 for P,

a =0 B =1, vy =-1 and 6 =-1 for P,

a =-1, B =-1, Y =1 and 6 =0 for P,

a =0, B =1, Yy =1 and 6 =0 for P,

=1, B =1, Y =0 and 6 =1 for P5

and a =1, B =0, Yy =-1 and § 1 for P,
With this new set [x‘] of linearly independent functions we

obtain the base-vectors X = SB(']. Thus, using the above relations, fi-

nally we obtain the relation X=TY as follows:

1

X =S[x'] =8P[x] =8PS" vy =1V,
where 7 = SPS™" s unitary, as can be easily verified.

fn the limit of weakly interacting particles, d = 3 for ‘P=YS,,
d =2for‘f’=Yand£Z_=lfor‘i’=YA.

4. CONCLUSIONS

Due to the indistinguishability of the N particles, according
to sections 2) and 3), the energy eigenvalue E is ¥! degenerate. The
energy eigenfunctions Y¥(a) that belong to the irreducibles sub- spaces
h(a) are column-vectors with T rows where T = (fa )2 is the dimension
of h(a). The general solution of the equation ¥ = EY is a column- vec-
tor Y with ' rows, given by the linear superposition of the state-
-vectors Y(a):

ly:zcocir((x):cy +CY, + It C& Y (a) ,

o S°s A4 a

where we have put in evidence the one-dimensional representations YA
and YS and we have denoted the multi-dimensional representations by
7 (a).

W must note that it is not possible to determine,by any quan-
tum-mechanical consideration, the values that can be assumed by the

c
constants .
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seems reasonable to expect that the particles with a common characte-

iiowever, since the sub-spaces % @ are equivalence classes it
ristic should be represented by a specific ¥{(a). Indeed, up to now, for
all particles that have been tested experimentally ¥ is only given by
Y= YS or by ¥ = YA' In the first case, the particles, called bosons,
have in common an integral spin. In the second case, the fermions, an

odd half-integral spin.

Thus, the bosons are represented by .YS and the fermions by Y .
The state-vectors Y'(a) of the multi-dimensional sub-spaces should re-
present particles that are neither bosons nor fermions. They are called

para-bosons if they have integral spin and para-fermions if they have

lb’7,8

an odd half-Integral spin

Since only bosons and fermions have been observtd, many pa-

5- . .
have been written to prove that only totally syrnmetricor only

pers1
totally anti-symmetric functions can exist in quanturn mechanics if the
indlstinguishability of the particles is assumed. However, the arguments
that have been adopted for the proof are not cornpletely satisfactories
since, as it was shown by Messiah and Greenberg!! and by Haag'® , they

are equlvalent to impose the one-dimensionality of the eigenfunctions Y.

Of course, it is quite possible that all physical particles
obey the ordinary quantum statistics and that para-bosons and para-
-fermions do not exist in nature. This should be an enormous simplifi-
cation of the N-identical particles problem because all multi- dimen~
sional representations are eliminated, remaining only two very simple

one-dimensional representations.

As, at least in principle, there are no theoretical inconsis-
tencies at the level of wave mechanics in adopting any irreducible re-
presentation sub-space for describing the quantum states, we are obli-
ged to accept an "a priori'  argument to rule out the inconvenient re-
presentations. We adopt in this case the Symmetrization Postulate which
can be interpreted as a supplementary condition for the quantum pro-

blem.

. . . 1-3
The Gentile parastatistics was developed to treat parti-

cles which have an arbitrary finite occupation number d. The fermion
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and boson descriptions are obtained as particular cases of this paras-
tatistics for d=I and d = «, respectively. The para-particles should

be described for a finite d>1.

Even assuming that the para-particles do not exist in natu-
re, in our opinion, Gentile's approach is very important as an impro-
vement of Bose statistics. It is able to describe more realistically
and more accurately the systems composed of a finite number ¥ of bo-~

1-3,20,21
sons .

in this sense, Bose statistics should be rigorously va-
1id only in the limit of ¥ as it occurs, for instance, with the pho-

tons in a cavityzz.

In quantum field theory, specific theoretical models*?%’ &7 8

have been proposed to see if all particles obey either Bose or Fermi
statistics. Among the alternatives for the problem®® we quote that
Green"® showed that quantum statistics can be considerably generali-
zed if one quantizes fields according to a system of axioms that aban-
don the usually accepted c-numbers postulate, i.e., the requirement
for the commutador or the anti-commutator of two field to be a ¢-num=~
ber. A strong indication in support of Green's parastatistics conjec-
ture is given by the decomposition of a parafield. Thus, for instance,
a para-Fermi field of order p may be written as the sum of p mutually
commuting Fermi fields. The observables should be functions of the pa-
rafield and the theoretical possibilities for their selection are res-
tricted by the principle of locality. By adopting the point of view of

Doplicher, Haag and Roberts?"?25,

if the net U of algebras of local
observables is the basic mathematical object of the theory, and if we
consider a set C as states over U as representing the states of inte-
rest in elementary particle physics, it is possible to show that the
pure states of this set are subdivided into superselection sectors.
Each superselection sector is labelled by generalized charge quantum

numbers and possesses a ' statistics parameters'' A which determines the

(n)

nature of the representations of the group S of the permutations on
n elements, for all n. This group is analogous to that considered in

sections 2) and 3), which arises in wave mechanics when permuting the

arguments of the N-particles state-vectors.

Thus, if taken in a very cautions sense, we can follow the
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analogy, and say that Gentile has antecipated the formulationof paras-
tatistics in the scheme of wave mechanics. It is also interesting to
note that the assurnption of a finite d in the quantum statistics of
Gentile is compatible with the occupation numburs deduced by Green from
his quantum theoretical field reasoning. However, to pursue such an
analogy is outside the scope of the present work and only this brief

remark is permited here.
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