Revista Brasileira de Física, Vol. 12, NP 2, 1982

Raman Effect in Single Crystal NiSO₄. 6 H₂O

L. S. G. CANCELA* and G. M. GUALBERTO**

Instituto de Física, UNICAMP, 13100 Campinas, Brasil***

Recebido em 5 de abril de 1982

The Raman spectrum of NiSo₄.6H₂0 was obtained at room temperature and 77 K. A theoretical study of the number, type and activity of the optical phonons in this material, permitted a classification of the observed phonons. The data showed an anomalous temperature dependence for the peak at 42 cm⁻¹ with symmetry B_2 and for the peaks at 75 and 115 cm⁻¹ with symmetry A_1 .

O espectro Raman do NiSO₄.6H₂O foi obtido à temperatura ambiente e a 77K. Un estudo teórico do número, tipo e atividades dos fonons ópticos neste material, nos permitiu classificar os fonons observados experimentalmente. Os resultados mostraram anomalias na dependência com a temperatura, para o pico em 42 cm^{-1} com simetria B_2 e para os picos 75 e 115cm⁻¹ com simetria A,.

INTRODUCTION

The Raman spectrum of NiSO₄. $6H_2O$ was studied by Stekhanov¹ in the neighborhood of the water vibrations between 2800 and 3700 cm⁻¹. He showed the influence of the crystal lattice on the vibrational spectrum of the hydrogen lines. Using a mercury lamp as the source, Krishnamurti² for the first time obtained a Raman spectrum at room temperature of sin-

^{*} Fellowship from PICD (Depto. de Física, UFPa).

Supported by CNPq.

Supported by CNPg and FINEP (Brasil).

gle crystals of NiSO₄. $6H_2O$. Jäger and Schaak³ have reported the laser excited Raman and IR specular reflection spectra (below 1200 cm⁻¹) of the crystal and its deutered analogue at different temperatures; howeverthis study provides explanation which are incorisistent with the structural data of the crystal. Finally, Jain et al^4 report a correct assignment of all phonons, as predicted by group theory. However those authors do not determine correctly all the phonon frequencies probably because the Raman measurements were performed at room temperature only. In the present work, we have made a theoretical study to determine the type, number and activity of the optical phonons. Furthermore, we have obtained the Raman spectrum of single crystals of NiSO₄. $6H_2O$, at room temperature and at 77 K, using a laser as the excitation source.

The structure of NiSO₄.6H₂O is well-known from x-ray studies⁵. The six water molecules form an octahedron around thenickel atom and the four oxygens form a tetrahedron around the sulfur. NiSO₄.6H₂O is a hygroscopic crystal which crystalizes in the tetragonal group $D_4^4(P4_12_1)$ with four molecules per unit cell. The four SO₄ ions are in sites with C_2 symmetry, as are the four Ni⁺⁺, whereas the 24 water molecules are in sites of C, symmetry. In ref.6 the tetragonal structure is shown projected onto one face of the cell.

Group theory predicts that the zone-center phonons belong to the following irreducible representations: $35 A_1 + 37 A_2 + 37 B_1 + 35 B_2 + 72 E$. The $35 A_1 + 37 B_1 + 35 B_2$ are Raman active optical phonons, the $36 A_2$ are infrared active and the 71 E are simultaneously Raman and infrared active. The degres of freedom of the free $S0_{+-}$ ionaredivided into the irreducible representations $A_1 + E + F_1 + 3F_2$. According to Herzberg⁷ they consist of the internal modes v_1 , v_2 , v_3 and v_4 the rotation R_{xyz} and the translations T_{xyz} . The complex Ni $(H_20)_{6}^{++}$ form an octahedron in which the nickel occupies the center and is surrounded by the water molecules. The degrees of freedom of this complex can be divided into the irreducible representations $A_{1g} + E_g + F_{1g} = F_{2g} + 3F_{1u} + F_{2u}$. The symmetry mode A_{1g} consists of the internal mode v_1 ; the doubly degenerate E corresponds to v_2^{+} , the triply degenerate F_{1g} to the rotations R_{xyz} ; the three F_{1u} modes corresponds to the translations T_{xyz} , also triply degenerate, corresponds to the vibrations v_3^{+} and v_4^{+} and finally the mode F_{2u} , also triply degenerate, corresponds to the

306

ISOLATED SITE FACTOR
SYMMETRY SYMETRY GROUP
S0
$$\frac{1}{6}$$
 (Td) S0 $\frac{1}{6}$ (C₂) NiSO₄6H₂O(D₄)
(v₁) A₁ 7A₁ 8B₂ 35A₁(R)
(v₂) E₁ 7A₁ 8B₄ 35A₁(R)
(v₁) A₁ 7A₁ 7A₁

sites and the factor groups of $\rm NiSO_4.6H_2O.$ The Raman tensors associated with each symmetry are given below^8

$$A_{1} = \begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix} \qquad B_{2} = \begin{bmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad B_{1} = \begin{bmatrix} c & 0 & 0 \\ 0 & -c & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$E(-y) = \begin{bmatrix} 0 & 0 & e \\ 0 & 0 & 0 \\ e & 0 & 0 \end{bmatrix} \qquad E(x) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & e \\ 0 & e & 0 \end{bmatrix}$$

EXPERIMENTAL DETAILS

The single crystals of nickel sulfate used in these experiments were grown at a temperature of 38° C from a saturated solution. Using the Laue technique, we verified that the crystals grow along the 001 direction in the form of a truncated pyramid with the a and b axes parallel to the edges of the base. The \underline{A} and \underline{B} faces of the crystal were polished using cerium oxide and mineral oil while the C face was obtained by cleaving the sample. Since the crystal is hygroscopic, the spectra are obtained soon after the crystal is polishad. The source used. was the 4880 Å line of an argon laser since we confirmed that the absorption of this crystal^g is lowest around this line. The power used was limited to 50 mW since, with larger powers, the crystal soon became opaque. The scattered light was analyzed with a double Spex monochromator equipped with a F.W. 130 photomultiplier. For measurements at 77 K, an imersion dewar was used. In this work the scattering geometry is indicated by the usual Raman notation¹⁰ k(ij)q where kand q indicate the directions of incident and scattered light, respectively, and i and j the polarization directions.

RESULTS AND DISCUSSIONS

In Fig. 2 we show the Raman spectrum of $NiSO_4.6H_2O$ obtained using different geometries and temperatures to separate the various li-

nes. In this figure all of the spectra were obtained in the region 0 to 1200 cm⁻¹. In the neighborhood of the v, mode of water (- 1600 cm⁻¹) nothing was observed, while the v_1 and v_3 modes are seen in Fig. 3. The classification of the phonons of Fig. 2 is given in Table 1, for T = 77K

$A_1 + x (zz)y$		$A_1 + B_1 z(xx)y$		$B_2 z(xy)x$		E(x) x(yz)y	
<u>300K</u>	<u>77K</u>	<u>300K</u>	<u>77K</u>	<u>300K</u>	<u>77K</u>	<u>300K</u>	<u>77K</u>
75 115 164	80 111 169	34 44 67	35 49 73	42 140 208	46 146 213	54 74	55 67 79
211	194 216 241	82 102	82 95	245	235 253 275	89 107	88 95
270 295 375	279 303 379	114 130	107 110 137	294 370 417	300 382 424	125	130 139 145
425 457	430 442 469		146 160 167	439 468 617	436 469 607	154 166 205	163 175 208
603	473 594 619	217 237	210 220 239	806	629 766 821	239 266 376	247 283 353
972 987 1088	972 987 1087	262 292	250 274 298	987 1100	885 987	436	380 428 437
	,	322 375	328 377 392			466	466 520 559
		423 436	415 430 439			613 987	604 655 987
		463	455 467 474 521 568			1090 1129	1090 1129
		613 743	595 616 758				
		865 972 987 1088	867 972 987 1088				
		1123	1123				

Table 1 - Optical phonons of NiSO₄.6H₂O at room temperature and 77K, all values are expressed in cm⁻¹

Fig.2 - Survey Raman Spectra of NiSO₄.6H₂0. (a) Spectrum showing A_1 , A_1 + B_1 , B_2 and E(x) Phonons at room temperature. (b) Spectrum showing the same phonons at 77K.

and 300 K. In Fig. 2 we show the A_1 phonons which corresponds to the configuration x(zz)y, the B_2 corresponding to z(xy)x, the E for z(yz)y and those for the geometry z(xx)y which corresponds to a superposition of the phonons A_1 and B_2 . For the low temperature measurements, the resolution is better as we see in Fig. 2b. In these spectra, we see that, ex-

Fig.3 - Raman Spectrum of NiSO₄. $6H_2O$ in the H_2O internal mode region. (a) Spectrum Showing B_2 Phonons at 300 and 77K. (b) Spectrum showing A_1 , phonons at 300 and 77K.

cluding the internal modes of water, we observe 18 of the 26 modes predicted for A_1 symmetry; 18 of the 26 predicted for B_2 symmetry, and 26 of the 62 predicted for E(x) symmetry. For the geometry z(xx)y we have a superposition of the A, and B_1 symmetries, where the frequencies 194cm⁻¹ and 303 cm⁻¹ with A, symmetry have decreased in intensity to the point of being invisible on this scale. The phonons seen in this geometry and not in the x(zz)y are classified as B_1 and they are 25 of the 28 predicted.

From the distribution of the water molecules in the unit cell⁶, we note that they are divided into three groups of eight molecules. Thus, we expect that in the region of the v_1 and v, modes there will be 6 peaks, corresponding to three modes for v, and three for v,. Fig. 3 shows the region between 3000 and 3600 cm⁻¹ where the v, and v, modes of water appear, for room temperature and 77 K and for the A_1 and B_2 symmetries. Table 2 shows the vibrational frequencies of the OH group.

A 1x	(zz)y	B ₂ z(xy)z		
300K	77К	300K	77K	
3101	3101		3113	
	3220		3214	
	3286	3257	3289	
	3325		3322	
3400	3393		3421	
	3457	3458	3458	

Table 2 - Frequencies (cm^{-1}) of Raman lines for NiSO₄.6H₂O in the H₂O internal modes region at 300 and 77K.

CONCLUSION

As we see in Figs. 2 and 3 the temperature reduction was fundamental for a precise determination of the frequencies. The modes A_1 x(zz)y and $B_2 z(xy)y$ show 13 frequencies at 300 K and 18 each at 77 K; the E(x) z(yz)y mode gave 18 frequencies at room temperature but 26 at 77 K; and finally, for the A, $+ B_1$ modes, the number increased from 23 to 37 at 77 K. For the internal modes (Fig.3) the effect of the temperature is even more pronounced. At room temperature, the overlap of the lines results in two peaks with symmetry A_1 (3101 and 3400 cm⁻¹) and two with B_1 (3257 and 3458 cm⁻¹), which subsequently separate into six at 77 K.

As we see in Fig. 2, the frequencies 42 and 75 cm⁻¹ of the B_2 and A, modes, obtained at room temperature, practically disappear at 77 K. Another anomaly is that the frequency 115 cm⁻¹ of the A_1 mode decreases to 111 cm⁻¹ at 77 K, instead of increasing as would be expected. We are currently undertaking measurements where the temperature is slowly varied in an attempt to clarify this anomalous behavior.

We wish to thank V. Stojanoff for providing the single crystals used in these experiments. Also we wish to acknowledge useful discussions with F. Cerdeira and F.P. Missel.

REFERENCES

1. Stekhanov, A.J. and Gabrichidze, Z.A. Optical and Spectrosc. 11, 3, 193 (1961).

2. Krishnamurti, D.I., Proceedings of the Indian Academy of Sciences 48, nº 6, Section A, 355 (1958).

3. Jager, J. and Schaack, G., Z., Naturforsch 28a, 783 (1973).

4. Jain, Y.S., Bist, H.D. and Verma, A.L.: J. Raman Spectroscop. Vol. 2; nº 4, 327 (1979).

5. Bewers, C.A. and Lipson, H.: Z. Kristallogr. 83, 123 (1932).

6. Wyckoff, R.W.C.; Crystal Structure, vol. 3, Wiley-Interscience, N.Y. See pg. 813.

7. Herzberg, G_{\cdot} : Molecular Spectra and Molecular Structure. Van Nostrand, Princeton, N.J. (1945).

8. Loudon, R.: Adv. Phys. 13, 423 (1964).

9. Grun-Grzhimailo, S.V., Brilliantov, N.A., Sviridova, R.K. and Sukhanova, O.N.: Sov. Phys. Cristallography 5, 2, 268 (1960).

10. Damen, T.C., Porto S.P.S. and Tell, B.: Phys. Rev. 242, 570 (1966).