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A statistical model for the electron distribution in orbitrons
is constructed where the effect of the end plates is considered. A com-
parison is made with the measured density of charge. The electromagnetic
oscillations generated by orbitrons are calculated as pressure waves and

the results obtained are compared with the data.

£ construido um modelo estatistico para a distribuicdo de elé-
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com os dados experimentais.
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1. INTRODUCTION

In a previous paper! we have analysed the charge distribution in
orbitrons and compared our results to the experimental data obtained by
Cybulska and Douglasz. Our basic hypothesis was that the electrons would
always estabilish a local thermal equilibrium in the observed steady sta-
te of the charge distribution. The filament injects electrons very far
from this equilibrium situation and our hipothesis is equivalent to say
that the relaxation time for the initial distributioii injected by the fi-
lament to reach the steady state dictributicn described by our model is
shorter than the mean life time of the electron in the orbitron. The op-
posite assumption is behind the considerations of Hoovermana, Feaks et

al* and Deichelbohrer®.

These authors assurned that the electron distribution is determi-
ned by the individual unperturbed orbits of the electrons that come from
the filament region. Therefore the local statistical equilibrium assumed
by us is suposed never to be reached and equivalently the relaxation time
refered to above is suposed to be much longer than the mean life time of
the electron inside the orbitron. Calculaticns of relaxation times are a
difficult task and we have relied on the agreement of our rnodel to the
experimental data of Cibulska and Douglas® to set out this controversial
point. Extensive analysis of Porto Pato® based on the assumption of in-
dependent trajectories of the electrons from the filament region have
shown to be unable to explain the experimental data of Cybulska and Dou-=
glas®. The situation with the statistical model for the electron distri-
bution is different. We have obtained a reasonably good agreement with the
experimental data, with a single adjustable parameter (the equilibrium

ternperature of the electrons in the steady state).

In this paper we will improve our previous calculations by con-
sidering partially the effect of the end plates on the distribution. e
then calculate the electromagnetic oscillations generated by the orbitron
as pressure waves in the electron distribution and compared with the ex-

perimental results of Troise et aZ.”.
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2. THE ELECTRON DENSITY FUNCTION

As we have argued in reference 1, the steady state phase space

distribution function for the electrons inside the orbitron is given by
flr,p) = 4 exp[-H(p,r)/kT] p €D (2.1)

subjected to the constraint that p should be inside a domain D caracteri-
zed by the orbits that do not touch the boundaries of the orbitron. For p
outside D f is zero. In eq. (2.1) H(p,r) is the single particle hamilto-

nian for the electron:

2
Hp,r) =B+ ¢ v(r) , (2.2)

2m
k is the Boltzmann constant, T the temperature of the electrons in the

steady and A a normalization constant. The potential V{(r) can be consi-
dered as the mean electrostatic potential in which one takes into account
self consistently the effect of the space charge of the electrons. For
the applications we have in mind, we will neglect the space charge effect
and set

1

v(e) = v, TS (r/B)

log(a/b)

where Va is the anode electrostatic potential and a and b are the anode

cathode radii respectively.

The spatial distribution is given by

> >

n(r) =j flr,p)d’p (2.3)
D

and the essential point in our model for n{(r) is the specification of the
domain D. This domain is specified by the kinematical considerations that
follows. 1t is well recognised that the electrons in orbitrons, have a
very long mean free path. W assume that once the trajectory of the elec-
tron is such as to be able to make contact with its metal environment, the
electron is absorbed. W therefore fix the domain D by excluding from
Flr,p) every momenta p that lead to trajectories that touch the anode or

the cathode. To prevent the electrons from touching the cathode its enough
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to assune that their energies are negative. Using cylindrical coordina-
tes we have

2 2

p 2 P
e L sZ oy < o0 (2.4)

Zm 2 2m

The electrons that do not collide with the anode are those that
t heangul ar momentum ; is larger than a minimum val ue fixed by the radius
a of the anode

/ p2 -
L >0. =avYm(g -2+ ev ) (2.5)
im 2m a

Let us introduce di mensionl ess quantities defining the variables:

x =r/b ,
u=p/(/i)
v = L/(Zmr @‘) L
t = pz/(zm /k_T) ’
and the constants
z, = al/b (2.6)
and
a=eV/(k) . (2.7)
Wth these definitions egs. (2.4) and (2.5 take the form
w2 +v2 +t2 < orlz) (2.8)
and
z? 2 2
— -1 vr-u?>a(l - Flx)) (2.9)
x2
1)
where we introduced
Flz) = log x/log z,

96



One observed that the integration in eq. (2.3) transforms into

integration over the (u,v,t)—space of the transforrned dornain D. !t is in

this space that D takes

its simples geometrical meaning. Eq. (2.8) shows

that D is inside of a sphere of radius F(z) and eq. (2.9) shows that the

other boundary of D is a hiperbolic cylinder with geratrix paraliel tothe

t-axis.

Fig. 1 shows the traces of these two surfaces in the plane =0.

Defining v,, v, and v, as in this figure, we have:

vy

and

The density distribution

- a0 -P)/ (@2 - xz)/xz)Jl/z, (2.10)
L 0 0

= x, Jo/x (2.11)

= VYOF(x) . (2.12)

may now be written as

Vs 2 ) 2ty (u,v)
n{x) = const.x ean(x) ” av e’ J du e ™ j ' de e_tz
LJvl 6 0
{”3 2 u, (v) 2 £, () —y
* dv e dy e J dt e , (2.13)
Yy 0 a -
where
t () = YoF(x) - u? - v?
u, ) = [@?-22)v?/a? - «(1-F(2))] "> (2.14)

u, (v) = [oF(x) - »2]*/?

The constant of normalization in eq. (2.13) is fixed by

1
[ nlx)de = 1
Jo

0
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Fig.1 - The traces of the two boundaries of the domain defired by eqs.
(2.8) and (2.9) in the plane ¢t=0. rhe cwrdinates v, v, and v, are
given by egs. (2.10), (2.11) and (2.12).

Ve observe from eq. (2.13) that #n(x) depends on two parameters:
x4, , which is fixed once the geometry of the orbitron is given, and a,
which is related to the steady state temperature of the electron cloud

and has to be adjusted to the experimental data.

Fig. 2 exhibits n(x) plotted for different values of a. One ob-
serves that the larger the value of a more sharp is the maximum of the
distribution near the anode and smaller is the value of X at the maximum.
This can be easily understood as a is inversely proportional to T. (See
e . 2.5.) The larger the value of a smaller is the value of Tand elec-
trons with less kinetic energies are more strongly pushed towards the ano-
de. The value of x4, taken for the curves exhibited in Fig. 1 where those
reported inref.2. InFig. 3 we exhibit the effect of varying X o BY increasing
x, the peak of the distribution shifts away from the anode. This is due
to the fact the only electrons with larger angular momenta are allowed in
the distribution. This effect is very important for the understanding of
theorbitron as an ion pump. The titaniumcylinder8 is what determines
the radius of the anode and being appreciably large it shifts the peak of
the distribution away from the anode having the effect of increasing the

effective volume of the orbitron.
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az=12,5

Fig.2 - The density distribution given by eq. (2.13) plotted for diffe-
rent values of a (eq. (2.5)) as indicated.

Fig.3 = The same as in Fig. 2 plotted for two values of x = 0.01333 and
0.1 and a as indicated.
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The density of electrons as a function of the radial distance
r to the anode was indirectly observed by Cybulska and Douglas2 by mea-
suring the energy spectrurn dI/dE of positive fons collected at the ca-
thode in the }imit of zero pressure. This spectrurn can be connected to
the ion current (dI/dR) produced by unit of volume in the electroncloud

as

dE  dRdE e dr das

dr _drde _ zm (dvy-r dI
On the other hand dI/dQ is given by

= ¥r, J’ a’p va (p*/2m)f(z,p) ,
an

where ¥ is the total number of electrons per unit of length in the or-
bitron, n, the density of the neutral gas and a@) the ionizationcross
section as a functicn of the electron energy. W take for o{E) the same

expression used in reference 1.

In Fig. 4 we show the experimental points of Cybulskaand Dou=
glas as dots with the corresponding error bars. The curves are theore-
tical predictions using their value of x;, = 0.06/4.5 and a = 8,10 and
13. One observes from this figure that a = 10, i.e., kT = 80eV, gives
the best fir to their data.

flv)

20-

® 1 ot 1 1 1 1 [l
33 66 OO 200 300 400 500 600 700 800 V

Fig. 4 = The experimental points of Cybulska and Douglas plotted as dotts
with the corresponding error bars. The curves are theoretical predictions
for differerit values of a as indicatea. The abcissa is the voltage mea-
sured to stop the ion after passing the cathode. The ordinate is the ion

turrent.
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It is important to mention that our calculation described here
gives a bettar fit than the one previously reported in ref. 1, where we
did not consider the cut off imposed on Pz as given by eq. (2.4). The
improvement is better observed in the low energy part of theioncurrent

spectrum.

3. COLLEETIVE OSCILLATIONS

One may look at the steady state of the electron cloud inside
the orbitron as a gas in thermal equilibrium. Let be p, the equilibrium
mass density of the electrons and p, the corresponding pressure. e

have

p0=po

5|5

as the equation of state of the electron gas, m is the mass of the e-

lectron.
We will now consider the deviations frorn these steady state
values:
plr,t) = oo(r) + p'(r,t)
p(r,t) = p {r) +p'(r,t)
and we will show that these deviations p'(r,t} and p'(r,t) will propa-

gate inside the cloud as pressure waves. To describe these waves we
will start from the two basic equations of fluid dynamics: the equation

of continuity

ap 3 - _ /
3zt V (pv) = 0 (3.1)
and Euler's equation
8; > >
L _q- 2
P =0-Vp (3.2)
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The vector field 7_5(r,t) is the velocity field and 5 is the
external force density applied to the gas. From the equilibrium value

we must have

Vpo
=0.

Sy QY
]

In what follows we will derive the equation for the propagation of
u=p'/p,

>
on the assumption that ¥ << 1 and v and p'/p are of the same order as

24.

We will first assume that the variation of v and p in the e-

lectron cloud are adiabatic and set

& have
2, =0
ap’S YT

where Y = 5/3 is the ratio of the specific heat at constant pressureand

at constant volume. Making use of this fact we transform the eq. (3.1)

into:
'7%%+3.3+v$ =0 (3.3)
where
g = 7;;; Vo . (3.4)
Similarly we can transform Euler’s eq. (3.2) we have
%j:i LR (3.5)

0
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where we made use of the fact that

-
g =

,U<¢
o

at equilibrium.

Eliminating D between the egs. (3.3) and (3.5) we finally

have

2, 4 30, - LB 6
Viu + q.Vu % 0 (3.6)

where
KT
e = Apy /o, = /L=
is the velocity of the pressure waves in the electron gas.

For k7 = 80 eV this gives
e = 0.0162 e,

where ¢, is the velocity of light.

>
Because of the cylindrical symmetry of the orbitron g, except

near the end plates, is a radial vector function of T only.

To find the eigen modes of the oscillations we assume

u = ur(r)ue(e)uz(z) eiwt

i.e., u is separable in cylindrical coordinates. The boundary condition

are

&
o)
(=)
=
I
<
@
N
3
Z

and
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W then have

n T
uz = sin |%— 3
2y

ug = sin (n0.6+a)

where »n and ng are integers and z, is the length of the orbitron.

The equation for U, takes the forrn

2

d*u_ du g
Ly plx) - +(A - -7 U, = 0 (3.7)
dze? dz x?

with boundary conditions

\

ulz,) =ul) =0

where X and XO are the dimensioniess variables previously introduced,

@) =l Do 1
N
and
2 b 2
R (3.8)

Eg. (3.7) was solved numerically and the eigenvalues A

0
where found where n, is the number of nodes of the radial functions.The

eigen frequencies of the oscillations are then given by

Thn !
=< /A + (=&* (3.9)
fn N, n N 2
» 792"z 2mb r’e “o
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4. COMPARISON WETM THE EXPERIMENTAL DATA

Eq. (3.7) was solved for differint values of n0 and the eigen-
values of A where obtained. Fixing x,, the equation was integrated from
x, towards £ = 1. The values of uz’(]) as a function of A for n6=0 and
ng = 1 are piotted in Fig. 5. The values of A for which ur(l) =0 are
the eigenvalues looked for. Tabie 1 gives the valueofknlﬂ’ne for x5 =1/30
and @ = 8 and 15. One observes that the value of o has an important ef-.
fect over the lower values and decreases its influence for the higher

values A .
of ",
r

8

204

~20}
-30¢

-30F

-100F

-150

Fig. 5 = Tha functior u, {z=1) as a function of A for two values of ng as

indicated. The zeros of « 1) are the eigenvalues of A, ' ur(z) sa-
r’"e
tisfies eq. (3.7) and the equilibrium acnsity was calculated with a=1.5,

z, = 0.033.
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Table | - The eigenvalues of An " of eq.

lues of a as indicated. r0

(3.7) for two different va-

-
"6

" | "y o =38 a =15
0 0 9.3 16.0
0 1 15.3 20.6
0 2 27.0 31.4
0 3 hi.9 45.8
o | 4 597 63.2
! 0 4.1 52,1
i | 53.0 62.0
] 2 75.6 82.4
] 3 101.6 107.3

4 130.7 135.8

. 7 . . .
Troise’ rneasured the oscillation frequencies for an

with the following pararneters:

0.075cm, b

Q
#

il

z =10.8cm V
a

1000V .

The frequencies observed in MHz where the following:

58.5

13.6 £ 0.2 f,

22.7 % 2.2 £, = 85.0

2 S

f3 =340 % 2.4 £, =127.0

+

+

+

2.6
2.8
3.3

£y
Ty
fs

2.25cm (=, = 1/30)

172.0
213.4

260.0

The four high frequencies observed are identified in Table 2.

orbitron

£ 3.7
+ 4.

+

+ 4.6

Let us ob-

serve that, frorn eq. (3.9), to obtain lower frequencies one would have to
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a=0.75cm

nr

Fig. 6 = The values of A

-l\o

60|

20—

s}

// )\0'2

1,1

M0

»oa

i S

o
10

15

ﬂI, ne

of n, and ng as indlcated.

Table 2 - The theoretical

| ues, the second col lum the theoretical
the mode of the vibration. W assume the follow ng parameters o

identification of the modes of the high
quenci es observed by Troise’. The first collumn is the experinental va-

value and the third collum is
15,

20 a

piotted as a function of a for the vaiues

b=22cm z, =10.8 cmand vV, = 1000v.
Frequenci es in MHz

Experi nent al Theor et cal ( mgden )
r’’6’ 'z
127 % 3.3 126.8 (0, 0, 1)
- 143.5 (0, 1, 1)
172 * 3.7 176.5 (0, 2, 1)
213+ 4. 212.8 (0, 3, 1)
260.0% 4.6 249.6 (0, 4, 1)

fre-
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decrease ¢ or equivalently k7, but this impliesin increasing a. X
increases as @ incredses, and therefore one understands why it s fms
possible to predict a fundamental frequency below 100 MHz in Troise's or-

bitron. The dependence oﬂ\n. on O is plotted in Fig. 6.

PdL)

In Table 2 we have adjusted the value of a (=15) to fix the
fundamental mode in 126.8 MHz. The other frequencies are therefere pre-
dictions of our theory. It is interesting to observe that these high fre-
quencies are all identified with different 6-modes. This is justified by
the further evidences given by Troise. He observed that these frequen-
cies vary very littie with z,. He actually did not detectany significant
variation with 2z, the lenyth of orbitron. The sensitiveness of the fre-

quencies with z, can easely be obteined from eq. (3.9).

W have
mhr 2
_ { 2]

2

e e Ty _ ¢ - AZ0 (&.1)
= mhn,y2 T E, )

N 3Ny 7 A + [ }
r’ 0z n sMg z,

If we identified these frequencies with different values of n, we had
predicted an increase ir; sensitiveness to z,with increasing the frequen-
cy, contrary to what was observed. The way we have identified these fre-
quencies, the larger sensitiveness is for the 127 MHz Frequencyandeven

for this one we have

~ Az
AF _ (0.026) 2
L= 0.026)

wha exhibits a very low sensitiveness to z,.

Fig. 7 shows the dependence of these high frequencies on the
voltage Va of the anode, the other parameters of the orbitron being fi-
xed. The values of the frequencies do not agree with those in Table i
because Troise used a different orbitron aiid the parameters of this or-
bitron has not been reported. One observes that these frequencies are

directly proportional tu x/Va. It is simple to interpret thid result.
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One expects the parameter a to be constant for a given orbitron as a,
the ratio of eVa to kT, measures the efficiency with which a given or-
bitron transforms the initial energy of the electrons (eVa) into kine-
tic energy in the steady state. We therefore assume that kT is propor-
tional to Va for a given orbitron and so, c, the velocity of pressure
waves in the electron cloud is proportional to /—I/;‘ and so it isalso for the

frequencies fnr’ne’ng given by eq. (3.9). The five low frequencies re-
ported by Troise has a different explanation as it has been put forward
for the first time by Rogerio®. His idea was that these low frequencies
come from ttie beats of the frequencies of the normal modes of vibration.
The base of his idea is the well known result of mechanics that says
that non-linear terms consldered as perturbations of the linear wave e-
gquation generate frequencies which are additions or subtractions of the
non-perturbed frequencies. In Table 3 we put forward the explanation of
the low frequencies as differences of normal mode frequencies calcula-
ted from our linear wave equation. W observe that the twovery low fre-
quencies come from the beat of z-modes of vibration. The third frequen-
cy (34.0 MHz) may come either from the beat of z-modes or 8-modes and
the other two (58.5 and 85.0MHz) como from beats of the 8-modes as in-

dicated in the above mentioned Table.

‘rv(MHz)
1001
3 *
50 e .
4
,
b d
e
s
- e
e -
. -
- _-
L P "
7 P
k4 -
- Ve P
4 -~
/,’
fo] "2 1 PRRSUN T TR NN WA N TR N I I NS S B G
100 500 1000 1500
V (voLTS)

Fig. 7 - The dependence of two high frequencies on the anode voltage Va'
The abcissa is the /XC. The numbers indicated are the values of ¥ . The

ordinate is the frequency In MHz. The data were taken from Troise’.
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Table 3 - The theoretical identifications of the beat mode of the low fre-
quencies observed by Troise’. The first collumn is the experirnental va-
Jues, the second collumn the theoretical prediction for the frequencies

both in MHz. The third collumn is the corresponding beat mode.

Frequencies in MHz Beat
Exp. " Theor. (np,ne,nz)—(np,ne,nz)
13.6 + 0,2 12.6 (0, 0, 3} - (0, 0, 1)
227 £ 2.2 22.8 (0, 0, 4) - (o, 0, 1)
22.3 {0, 0, 5) - (0, 0, 3)
34.0 £ 2.4 33.0 (0, 2, 1) - (0, 1, 1)
34.9 (0, 0, 5) - (0, 0, 1)
585 + 2.6 58.0 (1, 2,01 - (1, 0,1)
85.0 * 2.8 86.0 (0, 3, 1) - (0, 0, 1)

In Fig. 8 we show the results of Troise for the dependence on
z, of the low frequencies of an orbitron different from the one where
the frequencies reported in Table 3 were measured. W observe a strong
dependence on 32,, the lenyth of tne orbitron. This can be partially
understood as a consequence of these frequencies be beats of normal mo-
des of vibration. Ve will consider two cases corresponding to beats in

the z-mode and 8-mode.

Let us consider the beat frequency f‘ given by

f=r-f
From eq. (3.9) we have
- 2 [n'? n?

This equation shows that the sign of variation of f‘ with 3, depends on

the fact that j" comes from 8-mode (n! = nz) or z-mode (n;>nz). One
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Fig. 8 = The dependence of low frequencies on Zye The experimental points
and the curves plotted were taken from Troise 7. The abcissa is the length

2o of the orbitron ardd the ordinate is the frequency in MHz. The reported

ancde voltage for this set of data was 600 V.

observes then that 8-mode predicts that the frequency increases with g,
as it has been observed by Troise. To make a quantitative comparison let

us take =z, = 3.5 cm, as can be seen from Fig. 8. The reported Va was

0
600V and we assume the other geometrical dimensions to be the same, that
is a=0.075 and b = 2.25. W also assume a = 15. Under these conside-
rations the beat between the two modes (0, 1, 1) and (0, 0, 1) gives the
frequency ]_" = 11.8 MHz in the region observed by Troise. From eq. (4.2)

we have

—z [Azo]
7 “Z S
and we obtain
¢ =0.31
halrrr
From Fig. 8 we should have a valuetentimes larger than this one. e

. > . -2
nowobserve that the sensitiveness of f is proportional to z,” and so
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very sensitive to the value of z_ used. The end plates has the effect

0
of reppelling the electron cloud and so shorten the effective length of
the orbitron. As Troise's orbitrons is already very short {smaller than
its diameter) we are not surprise at the disagreement of the sensitive-
ness of f to z,. If we ssy that the end plates decreases %o of 2.5cm,

we would get the value for (Af/F)/{bzo/z,) observed in Fig. 8.

5. CCNCLUSION

W may conclude by saying that most of the experimental infor-

7 has been theoretically ex-

mation of Cibulska and Douglas2 and Troise
plained on the basis that the electron cloud inside the orbitron rea-
ches a steady state characterized by an equilibrium temperature. The os-
cillations observed by Troise has been explained as pressure waves inthe
electron cloud. It is interesting to observe that due to the lack of a
theoretical background at the time Troise took rhe measurements of these
oscillations, his data has not been extensively recorded to give a deep
insight on the behavior of the electron cloud. Nevertheless we are able
to sustain that the steady state thermai equilibrium of the electrons

gives a good understanding of the behavior of orbitrons.

it is interesting also to observe that orbitrcns can maintain
an electron cloud at temperatures of the order of 108 OK in the absence
of magnetic fields and any positive chorge to neutralize rhe electrosta-
tic repulsion among the eiectrons. The cloud of electrons make a good la-
boratory &evice for studying atomic and molecular behavior under such ex-
treme condition with the temperature controlled by the anoae voltage, as
by varying the anode voltage, we vary directly the temperature of the

cloud but not its spatial distribution.
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