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The so called 'Quasi-Potential equations' are explained in
the sirnple context of the non-relativistic Bethe-Salpeter Equation. The
many ways of dealing with retardation effects appear very clearly in
the present context as the responsible for the possibility of having an

infinite nunber of '"'on shell equivalent' such equations.

As assim chamadas equagdes quasi-potenciais sdo explicadas

usando a equacdo ndo relativistica de Bethe-Salpeter. O fato de existir

um namero infinito de equaclGes deste tipo, todas equivalentes on

shell'' aparece muito claramente no presente contexto.

1. INTRODUCTION

! one of us argued, among other things,

In a previous paper
that a consideration of the non-relativistic Bethe-Salpeter* equation
could help students to understand the vast literature on the so called
Quasi-potential equations'? (also called three-dirnensional relativis-

tic equations®). Such three-dimensional equations have been applied suc-

By non-relativistic we rmean Galilean Invariant. By Relativistic wemean

Einstenian Invariant.
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cessfully in problems ranging from bound state problems in Quantum Elec-

trodynamics® to intermediate energy nuclear physics®.

The variety of quasi-potential equations is often astounding
if one does not understand that different equations merely represent dif-
ferent "off-the-mass-shell't extrapolations of the two particle scatte-
ring amplitudes. This was shown very clearly by A.Klein and T.H.Lee® who
showed how to derive from the Relativistic Bethe-Salpeter equation, the
Gross equation’, the Fronsdal equation® and the Levy-Macke-Klein® equa-

tion.

In this paper we apply the A.Klein and T.H. Lee method to the
non-relativistic Bethe-Salpeter equation. The pedagogical advantage of
doing this is that we have simpler non-relativistic kinematics andavoid

positive energy projections and hence y-matrix complications.

In the second section we use the non-relativistic Bethe-Salpe-
ter equation to introduce our notation and to show that if one assumes
the interaction between the particles as instantaneous then we have a

reduction to the Lippmann-Schwinger equation.

In the third section we explain and apply the method descri-

bed in ref.5 to the non-relativistic Bethe-Salpeter equation.

Finally in the fourth-section we briefly review the problem
of obtaining a relativistic three-dimensional three body formalismwhich
have not been solved satisfactorily. 1t is suggested that consideration
of the three-body non-relativistic Bethe-Salpeter equation could be

helpfull in claryfying this problem.

2. THE NON RELATIVISTIC BETHE-SALPETEREOUATION

in this paper we consider a simpie system:a two particle sys-

tem whose hamiltonian is given by

> r,
Pf PZ - > > >
—+V(r,-r,) = Hy + Vip,-r,) = Hy +V (1)

H o= -
Zm,  2my
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> >
where P, (m,) and P,(m,) are the momentum (masses) of particles 1 and 2

and V(;l';;z) is the interaction between then. Although only a dependen-

ce of 5’)1-?‘2 is indicated in equation (1), V can depend on other va-
riables such as spin.
If we decompose the S-matrix as
<flsli> = 8, + <flzle> (2)
then <f|T|Z> satisfy the following Non-Relativistic Bethe - Salpeter
Equation
<P EPE|TBEDE > = <P E D,E,|V|PIEBLEL +
1715272 17172727 7 TPt 2R2 1515252
3
da’ey a’e? aEy dey o, o,
+ ” —— — <P,E,P,E,|V|PEIPIEL>
3 3
(2m)® (2m)?® (2w) (2m)
A A - > >
5 * " & <PIEVBYE!|T|BIEIDIE)> (3)
p Py
1 _gn . .1 .
-2m—1 E1+€7, I, E] + Ze
> > ~ > - R . )
where the Bethe-Salpeter kernel <P,E,P,E,|V|P/EIPJE}> is given, if the
interaction is instantaneous (see ref. 1), by
> > ~ o > . > > 2,
<P,E,P,F,|VIPIEIPIE!> = - 210 8(E +E,-E[-E})<P,P,|V|P|P}> (4)

The product

'ﬁnZ _ZSIIZ

. 2 .
— = +7e 55— - E + i€
2m, E, € 2m, 2

is refered to as the propagator of the Bethe-Salpeter Equation.

Equation (3) describes the scattering of particles which are

"off the nass shell', that is, -P%# 2m,E,, etc. The physical amplitude

is obtained by putting the particles '"on the mass shell', that s,

taking —I—"i = 2mE, , etc.

by

The form of the interaction (4) suggeststhat T has the form
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> -> | > > . > > a2
<P\E,P,E,|T|P/EJP]E]> = - 2mi 6(E1+E2—E1’-E2')<P1P2]T|P1'P2’> . (5

Replacing (5) in (2), and integrating in the energy variables

o> x>
we get for <P,P,|T|P{P}> the.result

d3P" ng"
> = BEIEEp ¢ [[ L 2 B 0ERp
(2m)® (2n)®

; P
L <BUPY|T|PIBL > (6)
—ﬁllz '5,,2
2;1 + i;— (E\+E,) + e
1 2

That is, the Bethe-Salpeter equation reduces to the Lippmann- Schwinger.
To indicate that <§1-§7{§’|_151'_259'> depends on the variable E,+E, we  rew-
ritte (5) as

- - > > . > > ) i > >
<P,E,P,E,|T|P]E/PIE)> = - 2ui S8(E +E,~E!-E})<P,P, |T|(E,+E,)|B'P)>

(7)

3. TRI-DIMENSIONAL EQUATIONS DERIVED
FROM THE NON-RELATIVISTIC BETHE-SALPETER EOUATION

In field theory however, the reduction rnentioned above does
not take place!®, that is, we do not have a Lipprnann-Schwinger equation
and have to be content with the Bethe-Salpeter equation or a ''Quasi-Po-

tential' Equation.

The reason why it is not possible to have a Lippmann- Schwin-

ger equation can be seen clearly if we transform to other variables

-> -> ->
P=P +P, E= E +E,

R . (8)
5 MyPy = mP, myE, —mkE,
q = ———. w |- —J O,

m, 4 m, my +m,
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and similarly for the primed quantities. The variable w is called "re-
lative energy''. It is the appearance of this variable that does not
aliow the reduction expressed in equation (6) to take place, and gives

rise to the so called "spurious solutions' to the Bethe-Salpeter equa-

tionl?!,
Invariance with respect to space and time translation allows'?
one to writte
= o of . -
<B.E\P,E, |VIB{E[BIE) = -(2m)'s §(B-E")8(B-P") <Gu[T|g'w’>  (9)

(if the interaction is assumed instantaneous then we would have
w! = <q 174 q| > )

The form (8) for the interaction suggests
<PgEw|T|P'q'E'w'> = =(21)* 7 §*(R-P')S(E-E') <quw|T|q'w'> (9)

and replacing (9) and (10) in (3) and using (8) we get the non relati-

vistic Bethe-Salpeter Equation in ''relative variables™

{ d3q " dw"

<qu|Tlgu’> = <qu|7]q'w"> +
j (@m)? (am)

@l 7 lg Mwts z x
<qu|7lq T o o
— [——— P + - -+ g
2my |my+m, q myHm, J
< 2 X <q"w"|f|q !> (10}

m 2 m
2
LI ?-q" - 2E+ou”+i€
2m, ym,Hm, myHm,

. R = ar> T~ ) R ) )
Again if <quw|¥|q'w'> = <¢|{Vlg"> , that is, if the interaction
is instantaneous then the integration in w' can be performed and we re-

¢ain the Lippmann-Schwinger equation.

In the Relativistic Bethe- Salpeter equation however,
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<qw{17fq'w’> is given by the sum of the two particle irreducible Feynman
diagrams and depends explicitly on w and w'. Equation (10) is in this
case a four dimensional equation instead of three-dimensional as the

Lippmann-Schwinger equation.

=g -
In the center of mass system P=O so that equation (10) sim-
plifies considerably. From now on we shall therefore assume to be in the
center of mass frame. To obtain additional simplification we shall also

assume from now on that my=m,= m. With this simplification (10) becomes

= - 3.n " N
<quiflqio’> = <qulfiqon + [ L2 By [7lgnm x
{2m)® (2w
7 7 ~
X <qIIwII]qulwr> (”)
2 "2
q" Yo, q" 1 v
o 5 E -w" +1¢ T v E+ w'+ze

The.physical amplitude is obtained from (11) by making E equal to the

total initial or final kinetic energy.

Although equation (11} is intrinsicaly four dimensional it is
possible to derive an approximate three-dimensional integral equation
{hence, Lippmann-Schwinger like) which for this reason is called quasi-
-potential or three-dimensional 'relativistic' equation. The procedure
however is not unique and in fact an infinite number of equations re-
sult, all of which however, give the same ''on shell amplitudes' if sol-

ved exactly.

To explain how this isdonewe first writteequation (11) in

simbolic form as
T=vV+767T (12)

Equation (12) is equivalente to another equation where the interaction

V is replaced by V and the propagator G by g
T=v+0v g7 (13)

if V.and g satisfies
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T+7 (G-g) vV (14)

<
1}

This can be shown solving for v in (14) and replacing in (13).
We now define g as

1

o

g =7 (15)

"2

9d_ - F + e
m

> R
where P is e projection operator thatfixes the value of the w variable

>
to a certain value. For example P can be taken simply as

3() = J o §() () (16)

whichfixes the value w=0 which is the value of w ™"on the mass shell' in

the center of mass frame.

To see how the procedure works we note that if we project

equations (13) left and right we get
- S, -+ -, d3q” '
<qu=0|Tlg'w=0> = qu=0|v|q w=0> + 7T 4@ w=01v |q "w=0>

- ‘ <q =0 |7 |7 "w=0> (17)
g7n— - F + 1€

which is a Lippmann-Schwinger like equation.

To get <qw=0]v|g'w=0> we have to solve equation (14) because

if we project it before solving we get

- 3 " -
Gu=0]v|q 'w=0> = Gu=0|7[g 'w'=0> + J dk v <qu=0|7|q"w" >
(2m)® (2m)
7 T -
<q”w"|v|q T '=0> -
q"2 ” . Q"z " .
—z—m—-iE-w + 1€ -z—rg—-—-E+w + 7€
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1 <§"w”=0]vl—c; Poy=Q> (18)

3. .M ~
_ J d°k - aw’ <E;w=0}V,3"w"=0> "
"
(2m)* (2m) 4 - E +1¢

m

which involves the unknown quantity <g"w”]Tlg'w’=0> so that the inte-

gration in w” can not be carried out.

Of course to solve (14) is as difficult as to solve the ori-
ginal equation (11). If however the perturbative solution of (14) is

good we can, by projecting it, get <qu=0]v|q 'w=0> |

In fact the perturbative solution of (14) is
v=T7+I7(G—g)I7+T7(G-g)?(G-g)§+... (19)

This can now be projected to give

¢

- 3_u ot .
<qw=()l7;!q'w=0> = <qw=osvlq’w’=0> +J c,i...q_. @___ <qw=01V\,C["U)"> %

(2m)3 (2m)
XJ i i 1 y
9" 1l g anege €21 neie 47 _pag
LZm 2E w’+7Te o 2E+w+7,€ - E+7,,€J

X <q”w”|T7|q’w'=0> + ..

and the integration in w'' can be carried since <qm=0iﬁ;fq"w”> is known
and so is <g'w”|¥|g 'w'=0>. If the series converge it is then possible to

get <gw=0]vlg'w=0> and solve the three-diniensional “relativistic' equa-

tion (16)

. . ) > -~ o~
Finally one should note, again, that if <qu|V|g 'w*> <gqlv]|q' >
that is, if there is no dependence on relative energy, then eqation (18)

reduces immediately to
> 1>, o,
<qu=0]v|q 'w=0> = <q|V|g ">

that is, one regains once again, the Lippmann-Schwinger equation.

1110



A question that immediately occurs is if it is possible to
choosefor g a formdifferent froni theonegiven by equation (15)
that would make the series (20) to converge faster. The answer to that
depends of course on the form of <qw|!?iq 'w"> but even given that, a ge-
neral answer to this question is not known. Partial answers can befound

in references (3) and (4).

4. THE THREE-BODY CASE

Correct integral equation for three particle scatteting pro-
blems, were given by Fadeev !3. Those equations (3 coupled equations) re=~

place for the three body case the Lippmann-Schwinger equation.

It is therefore interesting to inquire if it is possible to
give relativistic generalizations of the Fadeev-equations, that is, to
give three-dimensional Fadeev like equations which are consistent with

14

Lorentz invariance. Many such a formulation can be found in the 1i-

terature, but those equations were not derived from the three particle

15, 16

Bethe-Salpeter equation. It is also known that there are difficul-

ties in carrying out this program. Those difficulties seen to be consi-
derable reduced if one considers the problem in terms of the non-rela-

tivistic three particle Bethe-Salpeter equation. We hope to demonstrate

this in a future paper.

F.A.B. Coutinho and M.P. Isidro Filho grateful 1y acknowledge
CNPq and FAPESP, respectively, for support.
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