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Coupled oscillators are chosen as convenient models in order
to show the practical utilization of the Self Consistent Field Method
and the Adiabatic Approximation for instructional purposes. Results
are compared with exactly values and a good agreement is found in eve-

ry case.

1. INTRODUCTION

The Self Consistent Field (SCF) Method is so much important in
different Physical fields that it deserves to have several pedagogical
examples in order to be able to show them in those introductory courses
of Quantum Mechanics. There have been published some interesting arti=-
cles on the theme up to now: the unidimensional He atom®, and harmonic

2,3

coupled osciltlators. The Adiabatic Approximation (AA) isanother well

known method which is currently applied to study the electronic distri-

*»5  However, this method has not recei-

bution in molecules and sol ids.
ved an appropriate care from the pedagogical point of view because there
are not simple enough models to show its application. It is well known
that hamonic and anharmonic oscillator model have been widely used as
illustrative ways to present the fundamental principles of the Quantum
Mechanics. The purpose of this paper is to choose oscillators in order
to call attention about the possible utilization as an instructional aid
for analysing the SCF method and the AA. For that purpose we have chosen

harmonic oscillators with anharmonic coupling terms. Such selection rests
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upon the three following main reasons: a) these models appear in a natu-
ral way in molecular theory and the solution through SCF equations have
been recently givene‘g, b) for certain coupling potentials, the resul-
ting equations can be solved in an iterative way with the assistance of
an ordinary manuai calculator, and c) if one hss a series of examples
which can be solved with great accuracy, then it is possible to examine
the numerical methods which are currently used and so to know their de-

grees of confidence.

The plan of the paper is as follows: in Section 2 we deduce
the SCF equations we apply thcm to an anharmonic potential for which
there are exact snlutions. Numericail results are compared with exact
ones which were obtained previously. In Section 2 we make use of the AA
to calcuiate a pair of oscillators which are coupled by an harmonic po-
tential. Again, we compare with exact values, and the conditions of the

applicability of the approximation is discussed.

2. SCF EQUATIONS

We start froin a Hamiltonian F given by

N
=7 H'(x.) + Vi(xy,xp,een,x,) (1)
H 7/;] i 5 12L2> L
where
4] 0
., =T, .
Fi, 1 * 7 (2)
N N
oy m) = L L ggs o) vaa)) (3)
=] g7

As approximate eigenfunctions of # we choose
O, o) = T b(x) ()
such that

b o> = (5)
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The method consists in searching for an extremum of the energy E

N VoW
E= ) <o |H.0.>+ )V ) g..<0.lv.0.> <¢.|v.o.> 6
i=] il o i=] g Ot rT 4 dd ©)
through all possible variationsd¢. for Z=1,,...,/, and taking into

account the condition (5). Consequently, we are led to introduce the La-
grange miiltipliers e; and to consider the inconditional extremum of the

functional J{(¢) given by

N
J(¢) = E(¢) - ] 2. <b, | o> (7)

The variation & is equal to

N N N
8J = J  <80.|Hl%.> + <8 v .p.o<h v > +
A o 1459, izl j§¢ g, 160, |v,0,><0 v

1 o~

+ <¢i!vz‘¢i><6¢jh’j¢j>} - e, <6¢i|¢7j> +cee. =0 (8)

T

where ¢.¢ denotes the complex conjugate of all terms in the r.h.s. of

Eq. (8). The previous equation can be arranged in the following way

N N
Sg = ; <6¢i[(H‘Z + X gij <¢j]v7;¢j> v, Tes ¢7Z >4+ c.e =10

7=1 J#e
with g.. =g.. . W now define the SCF operators F. as
.7 Jt |
F.=H+ | g..<¢.lv.0.> 0. (9)
i iz TR T8I e
since the variations 8¢ are arbitrary. Then, Eq.(8) will be satisfy

for those ¢n- which are eigenfunctions of F7," i.e.
|

Fi¢ =g ¢ ] (10)
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Egs. (10) are easily solved for the case where

o _ 2 2 2 _
Hi = -0.5 D, + 0.5 v, Di = B/Bxi aan
N N
(1 )
v= 1 I {g.‘q.) %z, + g(2 z. oo+ g}i) z% %%} (12)
=] j>7: Td 1 J Td T (N T J

because now the SCF operators are identical with the corresponding to
shifted harmonic oscillators

1 3 2
Fi = -0.5 D; + 0.5 (w; +2A7§ ) +2A7;( ))xi +A£ ) T, (13)

where

R L

J#i J#t

(3) _ (3) 2

Energies e, are equal to
|
e, = (ni+0'5) (w; + 2(A7§2) + Aés)))l/2 - (Aéz))z/ (w; + 2(A£1) +

£ as)

The total energy of the system is calculated from Eq.(6), which can be

written as

E =

It~

e, - <oV ¢> (16)

=1 7

in order to exemplify the procedure in a precise and self- explanatory

manner, we present a coupled of bidimensional examples:

Exarnple I. This case has previously been considered with the help of
the SCF method’

H =-0.5D7-0.50D; +0.5u a2 +0.5u 2} +ax a a7
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¢ =0 @), (%)
2

nl
F, =-05D° +0.50° +2ad4,)z* ;A4 =<¢_|z% ¢ > (18)
1 ‘ 1 . 1 1 P | n, 2 n,
F, =-0.5D% + 0507 +2ad4,)x? ;A =< =z ¢ > (19)
2 ¢ 2 ¢ 2 2 2 2 %2 n, 1 n,

The functions ¢n,(i=l,2) are eigenfunctions of a Hamiltonian operator

g
corresponding to harmonic oscillators with effective frequencies p _

7
= (w; +2a Al)l/z, so that the eigenvalues are
eni = (ni + O'S)Wi ; L= ?,2 (20)
The resolution is completed by applying the virial theorem
<F.,x.D.|> = 2<T.> - W, <z?>=2e -2 W <x?> =0 (21)
1771 7 7 Tz n 1 1

7
from which one obtains two equations for 4; (£=1,2). There with the

equations (22-23) can be solved numerically in an iterative way with a

manual calculator

S
1

- (1, + 0.5 (w2 +2a4)? (22)

[N
]

(n2 + 0.5) (wi + Zc:z/lz)-l/2 (23)

After obtaining Ai’ one calculates e, from Eg. (20) and lastly the

. . 7
total energy En - is given by

1 2

E =e +e, -aA A, (24)

In Table 1 results are shown, together with exact values given by Per-

10 and energies for free oscillators (el ). The
Nys1y

comparison is made taking into account the dissociation energy Ep

cival and Pomphrey

I 2..2 _ -l
E, = w2 / b a = 58817.9 cm (25)

and the following values for the constants
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Tabie | - Comparison of exact, free, and SCF method eigenvalues for two

2

coupled oscillators with interaction potenciai ax; x5

wi=1 - w2 =05 - g =-0.003

. n | ananz Enfciz “n nz(Ref.IO)
0 o 1204.90 1203.40 1203.29
0 ] j 2203.07 2198.56 2198.35
10 | 2616.53 2612.01 2611.77
‘ 0 2 3201.25 3193.71 3193.39
{ 1 1 3614.70 3601.12 3600.78
i 2 0 4028.16 4020.61 4020.23

W= 3wk =0.55a =~ 0.003 (26)

We can see that a is small enough so tha: the SCF solutions are very

alike to the exact functions.

Example II. Our second example is the Barbanis' Hamiltonian, and it

has been widely studied. The Hamiltonian operator is

H = -0.5 (D?+D§)+O.5w§‘ x} + 0.5w) ) +a = xi (27)

The calculation scheme is similar to the corresponding one is Example

| and results are
b 2
Fr=-0.50% + 050 22 +ad x4, = <¢n2|le¢n2> (28)

- - 2 2 2, = >
F 0.5 D5 + 0.5 (2 +2ad )z ;4, <¢n1|x1 ¢n1 (29)

Over again, F, is an Hamiltonian operator associated to an harmonic
oscillator, while F, corresponds to a shifted oscillator. The eigen-

values are
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e = (n; + 0.5)w, - a® Af/(Z w?) (30)

e =(n, + 058w +2an 1/ (31)

2

From the virial relationship
<¢nlllF1,Dlll¢n1> =0 (32)
it follows the first equation which relates Al with A,. i.e.

A =-adA /vt (33)

while the second equation is obtained from the virial theorem for F,

-1/2
A, = (n, +0.5) (wi +2ad,) / (34)
The total energy is E’nl,n2 =€, + e, ~ @ A A,
in Table 11 our results are given, together with the exact eigenva-

luesll_ 15, and the corresponding values to a pair of harmonic oscilla-
tors (HO). Two main facts can be observed from numerical values; a)
SCF values are between harmonic oscillators and exact ones, in accor-
dance with theoretical predictions; b) errors for SCF results increase
with »,;. Then, 4n1 does not represent well the behavior of the exact
function. Let us suppose that 8¢ is a possible variation for which ¢ is

stable, i.e.

SE = <8p|Hp> + <0|HS¢> = 0 (35)
and, furthermore, that H depends on a parameter a. Then,
3E/da = <3¢/da|H> + <O|HdG/3a> + <3H/da> (36)

Ve can see that if d0/3a represents one compatible variation which sa-
tisfies Eq. (35) then ¢ will satisfy the Hellmann-Feynman theorem. In

our actual case it is so because

3/3a =L 80 /fa N ¢ (37)
. n. v g n.
7 7 J# g
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Table 11 - Cornparison of exact, free, and SCF eigenvalues for the Bar-

banis' Harniltonian.

wi=1.6 - w =09~ a=-0.008
" " f , HO g 44 o (Ref.6)
1 2 [ n, n, n, n, n,n,
" B 1.1068 1.1062 1.1058
0 1 2.0555 \ 2.0504 2.0491
; |
T, 0 bo2.3717 f 2.3712 2.3679
0 2 3.0042 2.9901 2.9896
o 2.3204 3.3154 3.3056
2o 3.6366 3.6360 3.6301
is one of the cornpatible variations with the SCF functions. For the
Barbanis' Harniltonian we have
BEnl,nz/Ea = Benl/Ba -A A, -add /3a A, ~ah 09A,/% + aenz/aa
(38)
Benl/aa =A A, +ah, M /o ‘ (39)
Bgn /fda = A, A, + a A, 3A2/3a (h0)

2

Replacing Eq. (39) and Eq. (40) in Egq. (38) we get the desired result

BE'nl,nz/aa = A4, 4, = <3H/3a> (41)

3. ADIABATIC APPROXIMATION

In order to offer a clear presentation of the 44 in such a
way that details can be transparently apprehended, we have chosen a
kind of interaction potential which has the property of being disenga-

ged through an appropriatechangeof variables. Then, equations are
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solved in an exact form and it allows us to offer an illustrative com-

parison. The Hamiltonian operator is
2
H=-D{/2m - D*2m, +k r3/2 +k,15/2 +gr r, (1)
where D. = 3/3r..
A 7

Let us assume that k;, k2 and g are numerically of compa-

rative orders. Defining the new set of variables X from the relarion-
ships
z, =m." r, (2)

the Hamiltonian (1) is re-written in the following way

B=- (d+d2)/2 + (wf xf + w; x:)/Z taz x, (3)
where

_ 1/2 -1/2
di = 3/3:1:1. ;oW = (ki/mi) s a = glmm,) W)

If my<m,, then

2,2 _ 2 _ 1/2 1/2
wz/w1 = (m1 7(2)/(r112 kl) «1 and afw) =gm’" /k, m)")<<]
(5)
The variable z being associated to the lighter mass, will describe
the faster movement (greater vibration frequency) and, consequently,
x, correspond to the slower movement. Under such conditions we can

make use of the AA, starting from an approximate wavefunction defined

by

$(x ,2,) = X (x) o, (x 52,) (6)

n.n

39
19772 1

where d)n (xl;xz) is eigenfunction of the Hamiltonian operator H,
b= @RS ek m = & ikl e /)

~a z,)* /(2u2) (7
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and the eigenvalues are given by the formula

en (xz) = (n1 + O.S)w1 - (axz)z/(z wf) (8)

an n, (Jiz) has to be eigenfunction of En

- 2 2 2, 2y 2
Hnl =-05d *+ 0.5, - a*/wilx,/(n+ 0.5)w, (9)
The Hamiltonian (9) corresponds to an harmonic oscillator provided

that the condition

y1/2

a<w, w, = (k; k,/(my m,))

is fulfilled. This condition is equivalent to

1/2
g <(kky)

Under such supposition, the eigenvalues of Hn are
1

gn n2= (nz + 0.5) (w§ _aZ/wi)l/z + (nl + 0.5) wl (IO)
1

For the purpose of getting the exact solutions, it is necessaryto per-

form a change of variabies which transforms the potentiaf energy in a

sum of square terms; i.e. the matrix
v a
! an)
2
a W,

must be diagonalized.

If s,, s, are the new variables, then the Hamiltonian (3)

will adopt the form
H=- (dezﬂf + deré)/’z + {p, sf + P, sg)/Z (12)

where
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deri = 3/837/. i1 o=1,2

and p,, p, are the eigerivalues of the matrix (11) and they are given by

: 1/2
p, = 0.5 (wf + ué) + ((wf - w§)2/4 + a?) / (13)
P, = 0.5 (2 +w2) « ((? - w2)2/h + a%)1/? (14)
If the Hamiltonian (12) stands for two harmonic oscillators, then p,

and p, have to positive, and we are carried again to the previously as-

sumed condition

<
a wl wz

This point deserves special attention because it makes plain that the
conditions which constants have to satisfy to obtain bonding states are
the same for approximate and exact functions. The exact energy of the

systeni is

En " = (n1 + 0.5) p:/z + (n, + 0.5) p;/z (15)
12

Now we wish to show that when the condition m1<< m, is satisfied, then

exact eigenenergies (15) approach to approxirnate energies (10). Star-

ting from a power series expansion of the square root, we have

(G2 ~ w2)2/h + a®) V2 = 0,502 - w2) (1 + ha®/ (w] - w22 =

~ 2 .2 2 - a2V 2y _ 2_
= 0.5 (W - w)(1 + 22 /(wf wy)?) = 0.5(wi-wl) +
+ az/(wf-wg)
Then

py =0t vt @l - WD) 2wt A At -l (L at)  (16)

- az/wf (7)

L2 2 2 _ oo2yct o2
p, = w, a/(w1 W) =W

Taking into account that
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1 >> a? /!

and replacing Egs. (16-17) in Eq. (15), we get Eq. {(10). Due to

2
py > W

2 2 2
; and p,>w, - a’/w)

we can be sure that
E > e (18)

It is in agreement with the general results presented by Epstein16 for
the ground state. In Figure | exact eigenvalues E , are compared Wwith

those obtained frorn the /M(e0 0) for the following constants

w, =1 a=w/2; 0.1<uw, <0.6

E

73t
72+ Fundamental State

7l ~—— £xact.Energy //
~ -~ Adiabatic /
0k approxirmation /
69r
681

6 7;
|

66}
65}
SLF
83F
62+
st
60f
59l
58
59
56

i i L I L

a6 o 02 03 0 05 W,

Fig.! - Comparison of exact and adiabatic approximation energies for the

ground state of two coupled oscillators with interaction potential arry
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