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In this work the concepts of polarization of photons and re-
lativistic electrons are introduced in a simplified form. Although
there are important differences in the concepts of photon and electron
polarization, it is shown that the same formalism may be used to des-
cribe them, which is very useful in the study ¢f interactions concer-
ned with polarizations of both photons and electrons, as in the pho-
toelectric and Compton effects. Photons are considered, in this work,
as a special case of relativistic spin 1 particles, with zero rest

mass.

Neste trabalho sdo apresentados, de uma forma simplificada,
os conceitos de polarizacdo de fotons e eletrons. Embora existam im-
portantes diferengas nos conceitos de polarizacao de fotons.e eletrons,
mostra-se que o mesmo formalismo pode ser usado para descreve-los, o]
que € muito Util no estudo de interagces envolvendo polarizagbes de
ambos, fotons e eletrons, como em efeitos fotoelétrico e Compton. Nes-
te trabalho os fotons sdo considerados como un caso especial de parti-

culas relativisticas de spin 1, com massa de repouso nula.

1. INTRODUCTION

During a research program concerned with correlations between
polarizations of photons and electrons in relativistic photoelectric
effect, it was noticed the lack of a text which brings together the con-
cepts and simplified descriptions of polarization of electron and pho-

ton beams. That was the reason for trying to write such a text.
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This work starts with the non relativistic description of po-
larized electrons and subsequently the relativistic description, when
the relation between the electron beam polarization and the expectation
value of the spin components of the electrons is not so obvious, is de-

veloped.

Following the description of spin 1/2 particles polarization,
the formalism is extended for spin 1 particles and the photon polariza-
tion concept arises from the fact that photons are a special case of

relativistic spin 1 particles with zero rest mass.

Although the concepts of electron and photon polarizations are
quite different, it is shown that the same formalism can be applied

to both cases.

2. NON RELATIVISTIC DESCRIPTION OF POLARIZATION OF
OF ELECTRONS ' -6

In this section some basic results from elementary non relati-
vistic quantum mechanics will be presented in order to introduce the
description of the electron polarization in terms of the spin of the

electrons.

The observable spin, represented by the operator
s=9,86,+5,8 +5, & (2.1)
satisfiesthe commutation relations characteristic of angular momentum

[si,sag]= ks, (cyclic) (2.2)

and can be written as

NSt

[ (2.3)

§=

where o, are the Pauli matrices, which may be represented as
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01 0 -7 1 0
9 = [l 0] Uy = ['L 8] Oy = [0 -l] (2.4)

The wave function which describes the state of a particle of

spin 1/2 is a two component spinor
x=1" (2.5)
a

and the most usual basis to represent this general state consists ofthe
spinors

u1=(:,) and uZZ(?) (2.6)

which are eigenfunctions of a, with eigenvalues +1! and -1, respectively.

Any general pure state X can, therefore, be written as a li-

near combination of u; and u, (coherent states)

C[)-ala)enll] e

This method of representing a pure state is called Jones formalism, due
to the similarity with the method introduced by Jones® to describe po-

larized light.

If the state X is normalised such as <Xlx> =1, one gets the
condition |a1|2 + |a2|2 =1, where Ial|2 is the probability that the
particle is in the state u,, that is, the probability of finding the
value + /2 whenmeasuringthespincomponent in 2z direction, and

|azl2 is the probability of finding - %A/2 (stateu,).

Due to the noncommutative relations (2.2) it is not possible
to measure simultaneously the three components of the spin, which means
physically that the measurement of one component affects the spin state.
However, the operator s? = s; + s; + s; comutes with any component and
can be measured simultaneously with any component. Its eigenvalues is
s(e + 1)%% = 34%/4. Therefore, when one says that the spin of the par-

ticle is in 2z direction, it means that the spin component in =z direc-
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tion has the value %#/2 but nothing can be said about the other compo-
3 2 o) 2 _ Hz
E 1;' E = e

nents, only that s + g2 =
Y z” Ty ¥ 2

So far only the spin of a single particle has been descri-

bed. Consider now a system of electrons.

if all the electrons are in the same spin state, the system
. . . . a . . . .
is said to be in a pure spin state X = (a;)’ and the spin direction is

specified by a: and a,.

The spinor that describes a spin in an arbitrary direction é
is such that (9.2) X = AX, where 0.2 is the projection of the spin ope-
rator in direction _é_ and A the correspoding eigenvalue. If one writes

the general expression for € as

é:sinecosq’)éx‘l'sin‘e sin ¢ g +coseéz (2.8)

Y

and substitutes the Pauli matrices as in (2.4) in the above expression,

one gets the eigenvalues )\+ =+ 1 and A_ = -1 with the corresponding
wave functions
cos 872 ) sin 872679
X, = R and x_ = (2.9)
* sin 9/287'qJ - cos 6/2
Thus, X+ and X_ are eigenfunctions of g.é with eigenvalues + 1 and -1

and represent the states where the spin in the arbitrary direction &

has the vaiues * %/2 and - %/2. The direction of the spin, _é_, is deter-

mined by

Q

a—j‘ = tan ‘g" eiq)

The importance of (2.9) is that it shows that it is possible
to construct states which are simultaneously eigenstates of the momen-
tum and spin component in any arbitrary direction since the solution of
the Schr8dinger equation for a free particle is ¥y =¥ exp% (p.r - Et).
Relativistically, as will be shown in section (3), it is only possible

to define such states in the direction of the momentum.

The eigenvalue representsthe result of a single measurement

and if information about the average spin direction of a beam of elec-
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trons is required, one has to calculate the expectation value of the

Pauli operator, <o> . The axial vector

< g>
= —= 2.10
no=2g (2.10)
is called polarization of the beam, and | is the intensity of the beam
and can be written as
I=<o,>=Y (2z.11)
= 0 = X X «

where a, is the 2x2 unity matrix.

The four quantities <07:> i =0,1,2,3 are called the Stokes
parameters, first introduced for polarized light and give a complete

description of the beam.

Using the representation (2.4) the Stokes parameters can be

written as:

Py=I=<0,>=]a|®+a,l?
P1=Pz=<oz>=|a1l2_lazlz
P2 = Px =< 0.’L‘ i aTaZ * ala: (2-12)

P, =P =< o, >=1{(a,a)f - a*a,)

Therefore, from the definition of the Stokes parameters Pi
= <Oi> and from (2.10) the relation between the polarization vector and

the Stokes parameters is

"9

A =P_o (2.13)
The degree of polarization is defined as
/o2 2 2
—_— P + Py + Py
/S CE . — 2.14
p LA A 7 (2.14)
and has the value of the unity for a beam in which all the electrons

are in the same spin state (totally polarized beam).
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A simple representation of the beam is, thus, given bya four

component column matrix

p I
° A
Por=1r|M (2.15)
P2 A2
P3 \A3

Four quantities are therefore required to describe the beam: its inten-

sity and the three components of the polarization vector.

An alternative way of describing the beam is by introducing

the density matrix defined as P = |y><x]| ,

lazlz a,ay
p = (2.16)

2
a*a, Iaz |

The density matrix, as any 2x2 matrix, can be expanded as a
linear combination of the Pauli matrixes and the unity matrix. One pro-
perty of the density matrix is that for any operator A, the expectation

value can be found by the relation

<p> = lrace <pa> (2.17)
trace p
As P. = <og.>, one can write
z 7

tr poi tr po
P, =———=o0r P = (2.18)

Z tr p = trop
whichcanbeeasilyverified byusing (2.4), (2.12) and (2.16). Thus,

from (2.12) and (2.16) one can represent the density matrix in terms of

the Stokes parameters

| |Bo *+ By P, - ipy
0 =% (2.19)
: P, + iPyF. = P

which can be written as
A
p =75 (p, +P.g) (2.20)
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or, in terms of the polarization vector,

) (2.21)
tr p 2 ==
So far only totally polarized electrons have been considered,
that is, ensembles in which all particles are in the same spin state.
Electrons have two spin states in an arbitrary direction, and beams com-
posed of electrons in these two states are represented by a density ma-
trix which is the average of the individual matrices of the two states
The two orthogonal states rnay be written as®
*
a, ajy

X1 = X, = | (2.22)
Clz) —al

and the average density matrix is

—

f
[al|2 ala’Zk |<12[2 —ala‘i

+ (1 -w) (2.23)

oI
It
€

La’:az la,|® -aja, la, |

where w is the relative population of the state X, - The resultant beam
is said to be partially polarized and the definitions of the Stokes pa-
rameters (2.18), (2.19) and (2.20) are still valid if the average den~-
sity matrix is used. If the two states are equally populated, i.e. w =
= 1/2, the density matrix becomes p = %00 and the beam is said to be
unpolarized. A general partially polarized beam in the z direction is

described by the Stokes vector

P, la,|? + la_|?
P, la, |2 - la_]?
= (2.24)
P, 0
P3 0
|a, |*
where |—F—[—[;— is the probability that a measurement of the spin in
a |“+ia
- -
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la_”
the z direction finds an eigenvalue *+ %4/2 and —8M is the
la,|%+la_|?

probability of finding eigenvalue -%A/2. The polarization of the beam is

=P -
A=z = (2.25)

where ¥ _(N_) is the number of measurements that yield tha value + 7/2
(-7/2), and N_+ N_ is the total number of measurements. If ¥ _or ¥_ is
equal to zero the beam is totally polarized (JA] = 1), if N =N_ the
beam is unpolarized (A = O), otherwise the beam is partially polarized
(0 < [af <.

If a beam is a mixture of individual subsystems with defini-
te spin states in different directions, the polarization of the systern
is defined as the average of the polarization values of the individual

sybsystems which are in pure states x(n) 1,

T Pgn) 27
b A

A = (2.26)
n 0
which can be rewritten, following (2.10) as
z
Lo <x(n) ]X(n)> (<x(”)]0IX(n)>/< X(n)lx(n)>)
- I (n), (n)
I x >
which can be simplified to
z <X(n)]0b((n)>
A== D (2.27)
P
The density matrix of the ensemble is given by
o=t o™ (2.28)
n
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(n)

are the individual density matrices of the pure states X(”)

where p
by

as defined in (2.16). The Stokes four vector is ZE;; where, now
Py

p =3P -3 ]al(n)l2 + Iaz(n)|2‘

0y O n
(2.29)
P = El an) =7 lal(”)lz - laz(n)lz
etc.

that is, the Stokes parameters of the total enseinbles are the sums of
the individual Stokes parameters of each partial group of electrons. The
relation (2.20) is still valid, butwith the redefinitions (2.28) and
(2.29).

An example may illustrate the mixture of states in a beam.
Consider an ensemble of N electrons totally polarized in the 2z direc-
tion mixed with another ensemble of N electrons totally polarized in
the. x direction. The resulting polarization is, from (2.27)

1v1“\2+1vﬂx A
A= 2N =7Az+'2'Ax

and the degree of polarization is A = Y1/ + 1/b = /172 and therefore

the resultant beam is partially polarized., The density matrix is, from
(2.28), (2.16), (2.4) and from ") =& (1), x® = vz by

] OJ | {1 1]
+ =¥
oo 2 4y

The Stokes parameters of the total ensemble are

3/2 1/2
/72 1/2

Pp =28 P, =20/2 P, =20/2 P,=0

which are the sums of the individual Stokes parameters of the two sub-

systems.

975



To conclude the discussion about polarization of electrons it
can be stated that an ensemble of electrons is said to be polarized if
the electron spins have a preferential orientation so that there exists
a direction for which the two possible spin states are not equally po-

pulated.

3. POLARIZATION OF RELATIVISTIC ELECTRONS #3710

The Schr‘o‘dinger equation is not valid in relativistic quan-
tum niechanics since it is not invariant under Lorentz transformation,
and therefore a new description is required, which is obtained by the
Dirac equation. The definition of polarization in terms of the expecta-
tion value of the spin is not Lorentz invariant and is valid only in
the rest frame of the electrons. in this section the relativistic trea-

tment of polarization of electrons will be discussed.

The Dirac equation says that Z7% % = HY, where the Hamilto-

nian is given by

RN

H=cg_..z+8mucz (3.1)

where a and §, Lx4 hermitian matrices, are called the Dirac matrices,
and the wave function P is a 4 component column matrix. The four Dirac

matrices satisfy the relations

2 _ 2 _
B = oci = 1
ociB + &xi = 0 and a0y + 00 = 2 87k (3.2)

The usual representation of the Dirac matrices is

10 0 o
B = a = - (3.3)
0 -1 o 0

where g, the Pauli matrices, are represented in (2.4).

A solution of the Dirac .equation (3.1) for a free particle
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. V
ip. x
Y(r,t) =uexp |- (3.4)
T —
where p" = (—g,p), = (e, L) and

1
u is a & component column matrix u = "
3
Uy
L

From (3.1), (3.3), (2.4) and (3.4) one sees that the set of
four equations contained in the Dirac equations gives non trivial sou-

tions if the determinant"

(B - mge?)u, 0 —cp, Us -c(pgC - ipy)ul,
- 2 . .
0 (E = mye*)u, -elp, + 'z,py)u3 cp, U,
- - -2 2
ep, u, elp, 1py)u2 (B + mye?®)u, 0
. 2
-e(p, + 7,py)u1 cp, Uy 0 (E + mge?)u,
vanishes. The condition for non trivial solutions, therefore, leads to

the energy relation

E? = (p; + pzj + pz)c2 + mzc"

E =t /p%? + mic2 (3.5)

There are Four linearly independent solutions, two belongimg to the po-
sitive energy, Ej (which corresponds to electrons) and two belonging to
the negative energy, E_ (which corresponds to positrons). The solutions

are, after normalization:
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|Ef4m c?

2|z| ch/(E+ + mocz)

c(px + ipy)/(E+ + mye?)

0
, 1
[E]+m e
Y57 . 2y
2|E| c(pgc - 7,py)/(E+ + mye
-ep,/ (B, + mye?)

(3.6)

-ep /(-E_ + mgc?)
) ]E[+m002 -c(px + ipy)/(-E_ + mye?)
c

.

2|B| 1
0

_c(px - ipy)/(-E_ + mocz)

- 2
|E| 4,0 cpz/( E_ + mye?)

h

b 2|E| 0

]

Solutions uA and uB correspond to positive energy (electrons) and U

c
and up, to negative energy (positrons). The general solution for positi=
ve energy is a linear combination of U, and Ug

= 7 (k. r-wt)
b= lau, + aug) e == (3.7)

where v =a,u, ta,u

Y 3 that is,

978



1 0
ﬁnoc? 0( 2 !
u = - -4 sz/ E’+moc + a, C(Px'ipy) /(E+m002) > (3.8)

lc (px*"ipy) /(B4mye?) —cpz/(E’+mocz)

——.

Each solution has two components,u; and u, which, in the non
relativistic limit are of order of v/e¢ which is small. These components
are called the small components and the others (x; and u,) are the lar-
ge components, which in non relativistic limit correspond to the solu-

tion of the Schrbdinger equation.

When one calculates the time variation of the angular momen-

tum L of a free particle using the relation

—~ 1

Z—'E = 7:7- EAH] one gets
d[’_

F-eLrE

which does not agree with the classical and non relativistic quantum
mechanics results where, for a free particle (or particle under a cen-
tral potential) the orbital angular momentum is a constan: of motion.

The operator which, added to L, commutes with H is

s=-%o (3.9)
where
g O
o' = (3.10)
0 o
and a are the non relativistic Paull matrices. The operator § is the

spin operator of the particles and has eigenvalues # %/2, which means
that a particle obeying the Dirac equation has spin 1/2. Therefore, one
can see that the spin appears directly from the Dirac equation. Although
this derivation was made for a specific representation of the Dirac ma-

trices, it is valid for any representation.
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In the non relativistic case, it is possible to construct
eigenfunctions of ¢.&, with eigenvalues %1, for any arbitrary direction
_é:_ by the coherent super-position of eigenstates of 0,, as shown in
(2.9). However, in the relativistic case, that is no longer possible.
Consider, for example, the operator Oé, applied to the general solution

of the Dirac equation (3.8),

.
16 0 0 a ay
0-1 0 0 Ca, -a,
c -1 T |—S_ (a,p,4a,(p_ip,)
o 0 1.0 ;—;(alpgaz(l{x lpy)) = > 1 2 w')
M 71, C o +ip)-ap)
0 0 0-1}} —=— (al(pxq-ip )+a2pz) __me (& ipy py 2Pz
E+m c? Y E+myc®

(3.11)

There is no possible combination of values of %; and @, which makes the
state u an eigenstate of 05 with eigenvalue +1 or -1, unless P Py= 0.
If the operator Ozlc is applied to the wave function %, the condition
such that this function can be eigenstate of Oa‘c is, analogously,
py =p, = 0. Therefore, it is only possible to construct states which
are simultaneously eigenstates of the momentum and the spin component
along the momentum direction. This result is expected because in the
relativistic treatment it is not the spin which is a constant of motion,
but the total angulat momentum L + 5. Only if L = 0 is the spin cons=
tant. For a plane wave in the arbitrary _é_ direction, the component of
the orbital momentum in this direction, Le’ vanishes and therefore it

is posssible to find eigenstates of Se.

It can therefore be seen that for relativistic electrons,only
in their rest frame, where (pm)R = (py)R = (pz)p =0, is it possible to
find eigenvalues of the spin component operators, in any arbitrary di-

rection. The spin part of the eigenfunction (3.8), in the rest frame is
al]

uR={a2 , Which means that only the large components are not equal to ze~
0
Lo)

ro. For low energy electrons the small components are so small that it

is possible to say that one can find eigenstates of any spin component.
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As the non relativistic Pauli rnatrices used in the defini-
tion of the spin operator (3.9) and (3.10) are in a representation where
o, is diagonal, it is convenient to choose the z axis as the direction
of the momentum, because some simplification will arise, as will be
shown. 1f p = p, Z, the general solution, for electrons, of the Dirac
equation, represented in (3.7) becomes

[

ay
T
b= u ei(kz-wt) _ /E-Fmoc a2 ei(kz-wt) (3.12)
V2 g ep/ (Bamye?)

(~a,cp/ (E+myc?)

The small components can be expressed in terms of the large cornponents,

e
uszh—E—uIZAu

and u, = St/ 2 u, = -4 u, (3.13)
E+m,c?

1
E+m,c?

and therefore Jones formalism, used for non relativistic electrons, may
be applied, but the difference is that now u; and u, are the large com-

ponents of the Dirac spinor.

From (3.7) one sees that there are two independent solutions

#, and %, for electrons of momentum P, corresponding to orthogonal spin

A B
states with spin parallel and antiparallel to the direction of the mo-

mentum.

An arbitrary pure state may be written as |x> =a Xy + By >

and the density matrix can be constructed.

lalz ab*

R

p= e <«xl = (3.14)

La*s 1p]*

in the same form as (2.16). As any 2x2 matrix, the density matrix canbe

written as a linear combination of the Pauli rnatrices,

p= 5 (P +P.0)

| —

which has the same form of (2.20), and as before (P,,P) are defined as
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the Stokes parameters. One has now to interpret the relation between
the Stokes parameters and the polarization vector with the expectation
value of the spin for relativistic electrons. In the electrons restfra-
me the former quantities are still related to the expectation value of

the spin operator as

(Pg = op) W= (&)

P
However, in the laboratory frame the three vector polarization does not
have the same form, since it is not a Lorentz covariant quantity. The
relation between the Stokes parameters (and, consequently, the polari-
zation vector) and the expectation values of the components of the spin
operator are understood in a simples way if one takes the convenient
choice of taking the z axis as the direction of momentum and uses the
representation (2.4), (3.3) and (3.10). In this case, as already poin-
ted out, the solutions of the Dirac equation are of the form of (3.12)
and the quantities a and » in (3.14) may be identified as the large com-
ponents a; and a, of the Dirdc spinor. The expectation values of the

components of the spin operator are written as
<0%> = <u[0%[u> i=0,1,2,3

where |u> is given by (3.12) and O% is written in the representations
(3.16), (2.4). Therefore, one has

1 0 0 0 a,
(B+m c?) 01 00 a,
3 —_ * * * - *
<0y” s @ialald-ar A, o 4 a A
0 0 0 1 -~a,A
1
<g}>= (0 + 45 (Ja,? + |a2|2) = la, 1% + |a2]2 = P,
(1 + 4%)
(3.15)
since L: 1 + 42,
Ec mﬂc2
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1. 000 a

: 0-1 00 a,
<g'> = ———— (a* a* g* 4 - a* 4)
1 1+ 42 1 72 1 2 0 0 1 0O alA
0 0 0 -1 -a,A
o = L a7 - 10,10+ 49) = Jay|* - layl® = 2,
(1 + 1)
(3.16)
1 0 0 a,
1 1 00 O a,
<gl> = —— @ afa¥ A -afh)
20+ 4% 0 0 0 | axd
00 1 0/ [-q,a
<g)> = L (a, a¥ ta*a) (0 - 4%)
(1 + 42%)
2 mye?
wop = 4)p o5, (3.17)
(1 + 4%)
Similarly
m002
<0}> = —— Py (3.18)

Relations (3.16), (3.17) and (3.18) show that the longitudinal polari-

zation, A, = P,/P,, keeps the non relativistic meaning, because

<Sl>=lﬁP

2 1

However, the transverse polarization components do not have the same
rneaning as expectation value of the corresponding spin components be-

cause

Therefore in the rest frame the expectation values of the
spin components have the same meaning as the polarization components

. 2 .
whereas for low energy electrons, which have E v m,c, the same inter-
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pretation is still a reasonable approximation. However, as the energy of
the electrons increases, the transverse components of the spin tend to
zero whereas the polarization components remain finite. In the extreme

relativistic limit, the spin is longitudinal.

4. SPIN 1 PARTICLES >%'21

The formalism used in section (2) for non relativistic spin
1/2 particles will now be extended for spin 1 particles. The reason for
studying spin 1 particles is that, as will be shown, photons are a spe-

cial case of relativistic spin 1 particles with mass zero.

For non relativistic particles with spin 1, the spin opera-

tor S satisfied the same commutation relations (2.2)

B SJ.] = 1R,

(5% 5,]

[
o

where now the operators Si' 5% are 3x3 matrices and
8% =5% +5% + 5% =251, (4.2)
x y z

where 1; is the unit 3x3 matrix.

There are three possible states of the components of the spin

along any direction, corresponding to eigenvalues m = +%, 0 -4,

In a representation where Sz is diagonal, one can write

(.3)

(= o B =)
o O

and the eigenstates of S’g are the three cornponent spinors
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1 0 (0
0 X = X = 0 (L’.l"‘)
0

corresponding to eigenvalues +h, 0, -h, respectively.

Any general pure state of the particle can be written in

terms of the orthogonal bases formed by Xpr X and X_ as
X = aX, * &Xo * aX. (k.5)

If this general state represents one particle the normalization condi-
tion is |a+|2 t |agl? + |a_|? =1 and if it represents a totally pola-
rized beam, the same quantity is normalized to be the intensity of the

beam.

Through the commutation relations (4.1) and (4.2) the matri-

ces corresponding to %( and SY are found to be, in this representation

001 0 0 -7 ©
sx=i 10 sy=/i_ 0 -i (4.6)
2 {y 1 o) £l

The density matrix p = )()(-r can be written as

|a+|2 a,ay aa¥
p = aiao Iao|2 a,a* (4.7)
2
a*a_ a_a’n‘ la_|

t

In analogy with the Pauli matrices for spin 1/2 particles

one can define

s=ho (4.8)

but it is no longer possible to represent any 3x3 matrix in terms of

13, Oy oy,oz. In order to give a complete representation of a general

3%X3 matrix for spin 1 particles, nine quantities must be specified and
the conventional representations uses the following set of spherical

5,12
tensor operators’’
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00
Tren ;/Tg— (o, * 7“.Oy) Tio =/73— %
Tyep = g (0, * wy)2 T,e, = ;g—z (o, t 40 )o, + 0,0, * ioy) -2
Ty = 7 (o, - 21,)
The expectation values of the tensor operators T'L',j are
= T Sf—:%i (4.10)

Substituting (4.6) and (4.9)-in (4.10), the density matrix

can be written as

.1 +/%- t,, +v/l—2: tzo:/z t1_1+/%:t /ftz_z

N

.
p=%too-/—%—tn-—t21 1 - V7 t,, /3

—
]
V3 t,, -/% t“+/gt21 1 -/—gtlo+/5—tzo

I

(&.11)

The nine quantities which describe the beam may be divided
into three parts: one component of a tensor of rank zero, %34, which is
the intensity of the beam; three components of a tensor of rank 1, tn.,
which form the so-called vector polarization; five components of a ten-
sor of rank 2, tzi’ which form the tensor polarization. Unlike the case
of spin 1/2 particles, the intensity and vector polarization do not des-
cribe completely the beam, because the components of the 2nd rank ten-

sor are also observables.

The expectation values of the tensor operator Tij may be

written, in terms of the matrix elements of the density matrix as:
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toe =I= la|?+ la,|® + |a_|?

tiy = (a [* - la_[®)/1
tieg = '1/2: (ala, + a;a:)/I (4.12)
tyo = ;‘—2_ (la,I2 - 2]a,|? + la_|?)/2

1= V372 layaf - ata )/I
t,4,= V3 (a¥a)/T

As for spin 1/2 particles, one can define the Stokes parame-

ters for spin 1 particles, but now, instead of four, one has to define

nine components,

s+ =I(1 ¢ t, t t t t t ) (4.13)

and the meaning of each component is not so clear.

As in the case of spin 1/2 particles, the Schrb‘dinger equa-
tion is not valid for relativistic spin 1 particles, which must be des-
cribed by a Lorentz covariant equation. In the case of spin 1/2 parti-
cles this equation is the Dirac equation (3.1). Particles with restmass
my and spin zero are described by a scalar field Y(x) which satisfies

the Klein-Gordon equation“

2

m_ e
-2 | v =0 (b.14)

where |:| = 87311’ uo=0,1,2,3.

Particles with spin 1 could possibly be described by a four

vector field which transforms under Lorentz transformation as q;u(x') =

= auv lliv(x) ans whose components wu satisfy the Klein-Gordon equation

myc?
e ll)u(x) =0 u=10,1,2,3 (4.15)
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However, the four vector representation is not a Yn{'que spin represent-
ation since the four dimensional representation D*D? of the pr(iper lLo-
rentz group, which is derived from the direct product D = D? x D? of

D° representation of the three dimensional rotational group, is reduced

to the direct sum of different spatial rotation representations, that
is,

11 1 1

33 3 b

) =D xD =7 +9° (4.16)

where D® is the scalar representation associated with spin zero and D!
is the vector representation associated with spin 1. As the represent-
ation space of D! is three dimensional, there must be one subsidiary
condition which limits the number of independent field components to
three, in order to cut out the scalar representation. This condition,
which must also be a Lorentz covariant, is called be Lorentz condition
and can be written as®"
] =0 L.17)
uwu (
The set of equations (4. 15) and (4.17) describes particles

with rest mass m, and a unique spin 1 and is called Proca equations.

A special case of particles satisfying the Proca equations
is that of zero rest mass particles. Such particles are the photons,
which are the quanto of electromagnetic radiation. If one substitutes

the rest mass in equation (4.15) with zero, the equations becomes

[[wu =0 (4.18)

which is the well known wave equation. The polarization states of the

photons will be studied in the next section.

As in the case of relativistic spin 1/2 particles, it is not
possible to construct eigenstates of relativistic spin 1 particles with
a definite momentum in an arbitrary direction. There are, however, si-
multaneous eigenstates of the momentum and the spin component along the
momentum direction since the component of the orbital angular momentum
along the direction of momentum vanishes. Once more it is convenient to

choose the 2z axis as the direction of momentum, and therefore a gene-
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ral pure state of a relativistic spin 1 particle can be written as a
linear combination of the eigenstates of the spin component along the
direction of motion, corresponding to eignevalues *+ %, 0, -#. Equations
(4.4), (4.5), (4.7) are still valid, with the condition that they are

related with the spin component along the direction of motion.

5. POLARIZATION OF PHOTONS 81314

The electromagnetic field A, = (icb,é), as mentioned in sec-

!
tion (4) is a special case of the fields which describe spin 1 parti-
cles, with the particular property that the quanta associated with such
a field, the photons, have a zero rest mass. The Proca equations (4.15)

and (4.17) for the electromagnetic field become

2

1 94
V2 a - =
2757 5= 0
) (5.1)
1 9°¢
v - =0
L e
with the Lorentz condition
199
VA+ =7 =0 (5.2)

It is important to notice that while the wave equations (5.1) are a
particular case of the more general Proca equations, the Lorentz condi-

tion (5.2) is the same as for finite rest mass particles.

The Lorentz condition (5.2) does not exhaust the possible
gauge transformations on the electrornagnetic field Au and a very useful

gauge is the so called Coulomb or transverse gauge which says that
V.4 = 0 (5.3)

In the Coulomb gauge, from (5.2) and the second equation (5.3) one can
see that the scalar potential ¢ vanishes. This means that for free

electromagnetic waves it is possible to choose a gauge in which the
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scalar potential vanishes and the electromagnetic fiels is totally des-

cribed by the poteritial vector 4 satisfying the wave equation
[Ja=0 (5.4)

subjected to the condition (5.3). The solution of (5.4) is a plane wave

(p_.r -2 ¢)
Alr,t) = 2 S e e (5.5)
and the condition (5.3) says that
e.p=20 (5.6)

that is, the electromagnetic waves are transverse. For this reason con-

dition (5.3) is called the transversality condition.

It is convenient to choose the 2z axis as the direction of
propagation of the field because in this case any vector operator can

be written as

Alm,y,2) = A,(8,,8,,8)%, + 4,(2,,8,,2.)x, + 4_(2,,2,,8)x_
(5.7)
where
} 0 0 }
X+= 0 Xy = 1 X = 0 (5.8)
0 0 1 }

are eigenstates of the spin component along the 2 axis with eigenvalues

+%, 0, -7% respectively, and

2, - —/—;_ (G, +1i3) 3,=% & - % (2, - ©2) (5.9

form the spherical basis which diagonalises Sz’ which is then represen-
ted by (4.3) and form an irreducible tensor of rank one which trans-
forms under rotation in the same way as the spherical harmonics Yy, ,

Y5 and Y, respectively. In this representation the transversality

-1
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condition (5.6) for the electromagnetic field allows a simplified form

of the vector potential to be written as
A4 =Apxe tA_x. , since 45 =0 (5.10)

where X4 and x_ are the eigenvectors of Sz with eigenvalues + % and -7%.
This representation is called the helicity representation and the state
X is called the state of positive helicity or state of right circular
polarization {RCP), corresponding to photons with spin along the direc-
tion of momentum. x_ is the state of negative helicity, or left circu-
lar polarization (LCP), corresponding to photons with spin opposite to
the direction of momentum. The helicity, defined as the compcnentofthe
spin in the direction of motion (Sz in this case) is a constant of mo-
tion since the component of the orbital angular momentum along the di-

rection of momentum is zero, that is JZ = Sz.

The transverse character of the electromagnetic field which
is a consequence of the vanishing rest mass of the photons can therefo-
re be interpreted to correspond to a zero probability of finding a pho-
ton with spin component m's = 0 along the direction of motion, which
means that photons are longitudinally polarized and have only two pos-
sible spin states, the right and left circular polarized states. In
analogy with the study of spin 1/2 particles one can say that as the
velocity of the particle increases the transverse components of the spin
of the particle decreases and in the extreme relativistic case whete
v=¢, which is the case of the photons, the state corresponding to trans-
verse spin vanishes and the particle has only longitudinal spin compo-
nent. Of course, as the photons have a rest mass equal to zero, it s

meaningless to try to define the spin of the photon in its rest frame.

The massless character of the photon, which corresponds to
a, = 0, leaves only four independent non vanishing elements of the den-
sity matrix (4.7), and consequently only four independent non vanishing
expectation values of the tensor operators T.. defined in (4.12). These

elements are 5, = |a,|? + |a_|? which is the intensity of the beam,

try = V3 (a,]? - la_|?) (5.11)
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which is a measure of the degree of circular polarization and tohn T

/3 a%a_ which are associated with the degree of linear polarization.

Since there are only two possible spin states for the pho-
tons, one can apply the same formalisrn used for non relativistic elec-
trons to describe the polarization of photons, but a reinterpretation
of the parameters is necessary. A general pure state may be written as

! 0

a
x=ax, tax =a, () *+a () = @) (5.12)

where X4 and x_ are two component spinors representing states of RCP
and LCP, and }a+!2 and |a_|? are the probabilities of finding a photon

in such states.

Alternatively, the transverse condition also allows a repre-

sentation of the vector potential as

A=A 8. +4 2 (5.13)

and one can represent a general pure state as
X=a_ x +a x =a (}) +a (0)=[ax (5.14)
x “x y "y x 0 y 1

where ¥, and Xy are states corresponding to linear polarization along
two mutually orthogonal axes, X and Yy, perpendicular to the direction
of momentum, and laxlz, Iayl2 are the probabilities of finding a photon
in such states. This formalism is known as Jones formalism, and was
first introduced in the analysis of golarized light®. The state x in
(5.14) is called the Jones vector and all the formalism is analogous to
the coherent states used for non relativistic electrons, although the
Jones vector is a two component vector in real space while thefunctions

describing the electrons are in spin space (spinors).

One can define the density matrix for a beam of photons in
the same pure state exactly as (2.16), and for a mixed beam as (2.28).
Also, the density matrix may be written in terms of the Stokes parame-
ters as in (2.19), (2.20) although the Stokes parameters and Pauli ma-

trices, in the case of photons, are not defined in real space but in
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Poincaré space. The photon beam is, thus, completely described by the

four Stokes parameters:

= T = = 2 2 U1
Py=I=<g, > Iaxl + layl (5.15)
the intensity of the beam is the total number of photons;

= = 2 _ 2
Py =<0, >=|al lay] (5.16)
the difference between the number of photons polarized along the x and
y axes, i, a measure of the linear polarization along the two transver-

se axes X and y ;

= < > = * 4 % B
Py 0, a, ay +aka, (5.17)
is a rneasure of the linear polarization along axes rotated by 7/4 inre-
lation to the axes of P ;

= = - *
p, =<0, > z(ama;‘ axay) (5.18)

is a measure of the circular polarization.
The polarization is defined as

A, =P./P, 1=1,2,3 (5.19)

but the polarization '"vector' is not defined in real space, but in the

Poincaré space in which the Stokes pararneters are defined.

States in the helicity and Jones representation defined in
(5.11) and (5.13) can be related by using the relations (5.9) between
the basis vectors. In Jones representations, the RCP and LCP states are
represented by (7]:) and (_17.,) and by substituting the relations between

a,, a_ with a,, aY one gets

+

¢ = |a_|2+ |a |? = P, (intensity of the beam)

00 x Y

tiy = i(axa; - a;ay) = P, (degree of circular polarization)
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s 2 2 > . . . .
£ = ([aml - |ay| * 1(ava:; + a*a)) = P, t iP, (combinations of 1i-

Ty
near polarization) which is in agreernent with che interpretation of

242

(5.11). (= means equal except for constants).
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