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In the framework of Wi and Yang theory of U(1) magnetic mono-
poles, two problems are revisited in this work: (i) the binding of a
spin-0 moncipole to a spin-1/2 particle possessing an arbitrary rnagnetic
dipole moment, and (ii) the energy levels and properties of the elec-
tron-dyon system. In both problems, the spin-1/2 particle is assumed to
obey the Pauli spin equation. Spin-orbit and other higher order terms
are treated as a perturbation, in connection with the second mentioned
problem. Wi and Yang's spinor monopole harrnonics allow an elegant and
simplified treatment of those problems. The results obtained are in good

agreement with those obtained in older papers.

No contexto da teoria de Wi e Yang dos monopolo-magnéticos
abelianos, dois problemas séo revisitados neste trabalho: (i) A ligacao
de um monopolo magnético de spin zero a uma particula de spin 1/2, do-
tada de um momento de dipolo magnético arbitrario, e (ii) os niveis de
energia e outras propriedades do sistema elétron-dyon. Hn ambos os pro-
blemas a particula de spin 1/2 é tratada pela equacdo de Pauli. 0 aco-
plamento spin-6rbita e outros termos superiores sdo tratados perturbati-
vamente para o segundo problema mencionado. Os harmdnicos espinoriais
de Wi e Yang permitem um tratamento elegante e simplificado daqueles
problemas. 3s resultados estdo em bom acordo com os obtidos em traba-

lhos anteriores.
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1. INTRODUCTION

A few years ago, Wi and Yang® propounded a new formulation
for the system consisting of a charged particle and a U(1) magnetic mo-
nopole, in which Dirac's string singularities in the vector potential2

are completely absent.

Their theory, from the mathematical view point, has the geo-
metrical structure of a fiber bundle. In other words, the conciliation
of eletromagnetism with magnetic rnonopoles and quantum mechanics, leads
naturally to a nontrivial U(1) fiber bundle®. As a consequence, instead
of wave functions, one arrives at the concept of wave-sections. in par-
ticular, the eigen-sections of the mornentum operator for a spinless
charged particle in the magnetic field of a monopole, are the so cal-
led monopole harmonics Y ,z,m(Q). which are generalizations of the or-
dinary spherical harmonics. The additional label q - denoting the pro-
duct of the electric charge of the particle times the magnetic charge
of the monopole - is an integer or half-integer that specifies how the
wave-sections, defined in two overlapping regions Rd and Rb around the

monopoie, are related in the region of overlap.

The ccncept of monopole harmonics and their generaiizations
provides an important simplification in the treatment of problems in-
volving magnetic monopoles, as compared with older treatments based on
symmetric top wave functions dri,n(e)' We hope that this will becorne ap-
parent in the following sections, where two problems are revisited and
solved by means of Wi and Yang's method. The first one, to be discus-
sed in section 2, is that of the binding of a spinless monopole t0 a
spin-1/2 particle possessing an arbitrary magnetic dipole mornent, a
problem first attacked by kalkus? and later by Sivers®, in connection
with the possibility of binding of a magnetic monopole to a spin-1/2
atomic nucleus. In this problem, the spin-1/2 particle is treated by
means of the Pauli spin equation, neglecting the spin-orbit interac-
tion and higher relativistic terms. Clearly, the applications of these
results to the monopole-nucleus system is, in several aspects, an ad-
mittedly rough procedure serving, at most, as order of magnitude esti-
mates. The inadequacy of the treatment and small distances can be par-

tly circumvented by a cut-off introduced by means of a hard repulsive
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core with a radius equal to the nuclear radius, as first suggested by

Sivers®.

The second problem, to be discussed in section 3, is that of
the energy spectrum of the electron-dyon quantum system, with its res-
pective degeneracy pattern. Also studied is the electric dipole moment
of the same system. In our treatrnent, the electron is described by a
Pauli spin equation, the spin orbit and higher order terms being con-

sidered as a perturbation.

In both problems, the relevant harmonics are the two- compo-
nents spinor monopole harmonics, discussed by Kazama, Yang and Goldha-
ber® in relation with their treatment of the Dirac equation’ for a
charged particle in the field of a magnetic monopole. A small Appendix
contains the relevant results on those harmonics that will be used in

this work. Finally, section 4 is devoted to the main conclusions.

2. BINDING OF A SPINLESS U(1) MAGNETIC MONOPOLE TO A
CHARGED PARTICLE OF SPIN-1/2 WITH A GIVEN MAGNETIC
MOMENT B,

Following refs. 4 and 5, we treat the above problem in the
Pauli spin approximation (A = c = 1)

lelvg = =
W= [l G- alelhis, e Slevm]y-m @)

2T M, s
where T is the reduced mass of the system, vg is the magnetic monopole
charge (v =21, +2,...), Z|e| is the electric charge of the particle,
and B, is its number of nuclear magnetons [le{/2M;, where My is the
proton mass]. Possible relativistic corrections are included in V(»).
in order to avoid string singularities in the vector potential, 7 is
defined! as two functions (Z)a and (Z)b in two overlapping regions Ra
and Rb arciund the monopole. Consequently, ¥ is a section and in order

to solve Pauli equation (2.1), one has simply to consider the total an-

gular momentum

>

T=%+3dn (2.2)
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which is an Hermitian operator in the Hilbert space of sections. In
>
(2.2), L is defined as

>

Z=;X(E-Mdm~q£ (2.3)

> - . . . .
where g= Zlel\)g, and G are the Paull spin matrices. The eigen-sections
> .
of J2 and JZ are the spinor monopole harmonics, whose main properties

are reproduced in the Appendix.

Setting
B=p - zleld (2.4)
we have.the identity
1o e el 3
= (¢.7)? = (e - Zle|d)? - —5— =~ (2.5)

27 T 2T 2T 5

so that, the Pauli equation (2.1) can be written as

B > >
1 =222 v (2 _ 2 g.r _
77“$)+7 7o @m;r+wm¢ = Ey (2.6)
This equation will be solved, separately, for two cases. In the first
one, we will study the state with angular momentum J§ = |q| - 1/2; in

the second, the states with j > |q| + 1/2. Writting the angular momen-

tum in the form

J=lal -1z +w, (2.7)
then the state with § = |g| - 1/2 correspond to take N=0, and the sta-
tes with J > ]q[ - 1/2 correspond to take N integer =1 in (2.7).

2.A. The lowest angular momentum state

The lowest angular momentum state (¥=0) has

i=lgl -1 (2.8)

and is described by the two component spinor (see Appendix)
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no=el) - lgt - 172 (2.9)
m ggm

Making use of properties P.5 and P.6 of the Appendix in the spin equa-
tion (2.6) with the ''Ansatz''

b, = flon, (2.10)

we readily obtain the following radial equation

NI B i] P+ ) s 2ENER) =0 2o)
p2 dr |_ dr] p2 :
where
L 4
B, = lelvg |z - i B, (2.12)
1
lql
By Dirac's quantization condition?
lelg =3 or 2 =zv (2.13)
and equation (2.12) becomes
vl , .
Bo=—2— Z—_I‘/.TBZ (2.1)

Note that: B, may be negative (attraction), depending on the values of
the various quantities involved. In particular, for the proton (Z = 1
and B, = 2,79), B, is always negative for Mg>0,56 M, and positivefor
Mg < 0,56 M.
(Z =2 and B, = -2,12), 8 is always positive. Table | gives typical

On the other hand, for instance, for the He® nucleus
values of B, for He® and for the proton with various assumptions
about the magnetic monopole charge and mass.

It may be remarked that for the neutron case (Z=0), the lo-
west angular momentum state is absent, so that for this case, the pos-

sible ¥ values are

N=‘, 2) 37

which will be studied in section 2.B.
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Sivers,

| ue,
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Table |. Typical values of B,, given by expression (2.14),

| uy
Nucleus BZ v (,=1) Bo
4%7

1,16 -0,25

100 -0,88

.E L 200 -0,89
2,79

(z=1) 0,81 -0,25

+2 100 -1,77

200 -1,78

100 4,09

£ 200 4,13
-2,12

He® } 100 8,17

2 j 200 8,27

32,2 -0,25

+] 100 -1,04

¢ 200 -1,28
(2=6) 0,702

23,3 -0,25

+2 100 -2,09

200 -2,57

4,46 -0,25

1 100 -16,6

gh? 200 -18,3
2,63

(Z=9) [”32 _0’25

+2 100 ~33,1

200 -36,6

The results obtained in this section coincide with those of

positive or negative.

except that the sign of v is to assume,

correctly,

either

va-



2.B. Higher angular momentum states

For angular momentum states with

Jzlgl -1/2 or W1, (2.15)
we take the '‘Ansatz'!
- (M) (2)]
wjm = f(r) [F,jm + K&;jm (2.16)
in terms of the spinar monopole harmonics ié:'n)-, def ined in the Appen-
dix. Using, now, the properties P.7 to P.10 in equation (2.6) with the
wave section (2.16), we obtain two an order differential equations for
fr)
L [rz i—]f B 2 XK ey ap(e-y)p = 0 (2.17)
r? dr ar. r?
1a [rz %Z_]f S ulul) 2 XK o op(E-n)f = 0 (2.18)
2 7 2
r° dr r
where
u = [N(N + IZ\)[)JI/2 (2.19)
and
r
v T
== |&—B, - Z] (2.20)
Xx=3 | %

Egs. (2.17) and (2.18) are made to coincide into a single differential

equation if
uu=1) + xx = u(u+l) +’% . (2.21)
Solving fer K, one gets

MO NSRS (2.22)

and
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P S O (2.23)
X

Then, the two possibles wave sections are given by

(1) (1) [, (1) (1) (2)

R R ] (2.24)
and

(2) (2} [.(v) (2) -(2)

wj:z =F z (};jrln + K ‘C’jm] , (2.25)

(1,2)

where the function f is obtained as the solution of

(1,2)
B b
] d 2 d (1’2) - N (1)2) ZT(E'V) (172)=0
r? dr [r ar’:lf r? d * 4 (2.26)
with

s;f;m) - E (i) (2.27)

By using, now, (2.19) and (2.20), we finally obtain

/
glie) ez @ [zv(zv+lzvl) Gy - Z)z}l 2

(2.28)

(2)). Again,

where the up (down) sign corresponds to the solution w(l)(w
as in the lowest angular momentum case, this number may be positive or
negative, depending on the values of the various quantities involved.
In particular, for the proton, with Mg z M, (where Mg is the rnonopole

12 g always positive, in contrast with B, for the N-O case.

mass) By
Table I} givestypical values of BA(II’Z) for He® and proton with various
assumptions about the magnetic monopole charge and for differents an-

gular momentum states.

2.C. The radial equation

The radial equation is

—]2— —rz 5'2—} f - 8—2 f o+ 2T(E-V)f =0 (2.29)
r

d
r° dr

dr
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Table I}: Typical values of B}fll’Z), given by exprersion (2.28) for
several spin 1/2 nucl ei
. i iy (1) (2)
Nucleus B, :Mg (Ml_‘). v N By By

f ; 1 -0,38 2,38

} Lox 2 1,79 6,21

n | ; 3 5,85 12,15
-1,91 200

(z =0) 1 -1,15 3,15

+2 2 1,24 6,76

3 5,45 12,55

00,33 3,67

*] 2 3,39 8,61

p, i 3 3,42 15,58
2,79 200

1 0,52 5,48

(z=1 +2 2 4,66 11,34

3 10,74 19,26

1 -1,48 7,48

He® ] 2 2,99 13,01

: 3 9,34 20,66
-2,12 | 200

] -3,56 15,56

(z = 2) +2 2 3,04 20,96

3 11,55 30,45

1 3,25 10,75

13 +] 2 11,20 20,80

¢ 3| 21,17 32,83
0,702 { 200

: 1 6,59 19,41

(Z = 6) +2 2 | 20,51 35,49

3 36,45 53,55

1 5,51 14,49

, +] 2 16,33 27,67

Fl9 3 29,20 42,80
2,63 200

1 11,27 26,73

(z =9) +2 2 | 31,01 48,99

3 52,81 73,19
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with 8 given by B, for 4 = lgl = 12 (W=0) and by BN for § 2 [q[ + 1/2
(# 2 1). As pointed out in sections 2.A and 2.8, B may be positive or
negative. In either case, the above equation may give rise to bound-

-states, as first pointed out by Sivers®,

For completeness, we briefly discuss the bound state solu-
tions for the case of an electrically uncharged monopole. in this case,
the Coulomb potential vanishes in (2.29). Then.if 8>0, no bound states,
of course, exist. If B<0, the particle falls in the center, where the
monopole is: there is no lower bound for the energy E. However, If
V(r) represents an infinite repulsive hard core at some small distance
r,, that is, if

(2.30)

o for 0<r <r,
V(r) =

0 for r>r,

then, equation (2.29) may give rise to definite bound states. This si-
tuation is physically reasonable if the particle is a spin 1/2 atomic
nucleus interacting with the monopole. At very short distances, the
hadronic interactions may then be simulated by a potential like (2.30)
at distances r, corresponding to the nuclear radius (r, = 1.2 Al/aF ).
As first shown in ref. 5, one can then get binding energies much lar-

ger than those predicted by Malkus".

The boundary conditions to be imposed to the radial equation

Z—z;[rz fz‘z—r—]f -%2r2+s(s+l)]f=0 (2.31)
where k% = - 2TE, are now
f'(ro) =0
(2.32)
lim £() = 0 .
Irm

The corresponding negative energy solution is given by ®
F(r)= oY% g (kry, (2.33)

where Kp is the modified Bessel function of order
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p=[s+Hl/2 (2.34)

The modified Bessel functions has no zeros, unless p be purely imagi-

nary, that is

B< g (2.35)

In this case, approximate values for the energy, are easily seen to be
given by

B, ~ Bt 1/4 (2.36)

2Tr,

Notice the sensitivity of Zy to the value of r,. This type of binding
occurs only for systems with B<~1/L. This is the case of the protonfor
V=0 and Mé 2 M, as can be seen from table |I. On the other hand, for
He?® and neutron this type of binding can occur only in some cases, de-
pending on the values of Nb, v and of the angular momentum N (see ta-
ble 11). Typical values of the brinding energy (2.36) for several nu-

clei, are given in table It].

Table I11: Typical values of the binding energy, given by equa-
tion (2.36), withr, = PA'¥(b = 1,2F except for nand p where
the value » = 0,8 L was taken).
Nucleus Mg v o bij BN ’Eo
(M= 1) 7] [MeV)
” 200 +] 0,8 ] -0,38 |- b,24
£2 0,8 1 -1,15 29,4
. 200 +] 0,8 |0 -0,89 20,9
+2 | 0,8 0 -1,78 49,9
He 200 011,7 |1 -1,48 2,99
+2 1,7 1 -3,56 8,05
cls 200 1 2,8 0 -1,28 0,22
+2 2,8 0 -2,57 0,50
Flg 200 i’l 3,2 0 ‘]8,3 2,)]
+2 3,2 0 -36,6 4,25
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3. THE ELECTRON-DYON QUANTUM SYSTEM

We treat in this section the bound states of the electron-
-dyon quantum system in the non-relativistic approximation and in two
differents cases. In either case, the dyon is considered as a spinless
particle with magnetic charge vg (Vv = 11, 12,. ..), electric charge

Xe(A = %1, #2,...) and infinite rnass. The two cases are:

(i)we neglect the electron spin, describing it by Schridinger equa-

tion, and

(ii) we take into account the electron spin and use the Pauli equation

to describe it.
(i) The Schrgdinger Case
The Schr8dinger equation is (% = c = 1)
w Ly -2 2]y - m (3.1)

where M stands for the electron rnass. Putting

= .2
¥ = R(»r) - () (3.2)
where qu(ﬂ)
q = evg , (3.3)
one readily gets for the radial equation
2. - 2
“2% {_i___id_+_-.____““” | r+2 R=-zr (3.4)
| dr? »rdr r? r
where the range of R is given by
2= lal, dal +1, gl +2,... . (3.5)

Notice that the equation (3.4) coincides with the usual radial equation

for the H-atom, if an angular momenturn nurnber S is defined as
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1/2
s = [(su%)z -q{' -q% . (3.6)

Settingk? = -2ME, MAe?/k =y and p = 2kr, one gets

2
M+£@-[%-%+ﬁ%ﬂ]a=o, (3.7)

dp* p dp

whose bound state solutions are given by

= ¢7P/2 pS F (-y+S+ 1, 25+ 2, p). (3.8)

R(p) F

in order to guarantee the correct behavior at p»®, one must have
“Y+S+ 1% -n (3.9)

with # a positive integer. In this case, the confluent hypergeometric
function |F, appearing in (3.8), is a polynomial of degree n = y-$-1,

and the energy spectrum is given by

1

=-3 Me*(n+ 8 +1)°2 (3.10)

E Mety™? = -

1
2

® and is represented in Fig.l for v=1. Notice

which is Balmer-1ike®’
that there is no accidental degeneracy in the present case. The nor-
malization of the wave function (3.8) may be performed using the well-
-known integrals involving confluent hypergeometric functions'®, Fi-
nally, we remark that the wave functions of the ground state is zero

at the origin, in contrast with the H-atom case.
(ii) The Pauli Spin Case

The electron-dyon system in the present case, corresponds to

a particular case of the problem studied in section 2, with

B =2 =] (3.11)

where B now, is expressed in Bohr magnetons. Then, the Pauli equa-

Z 7
tion now reads
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0,43 0,42 0,41 0,42

—=aa— (2} (4) {86) (8)
0,64 2) 0,62 (4) 0,59 (6) .6l (8)
{,00 0,95 :
—0% (2)  —————g) —————{6)
. 1,88
s} )
__hes (2) (4)
5,19
. (2)
{:l ,E: Z, ,[: § ,f:z
2 2 2 2
Fig.1 - Spectrum corresponding to the Schrbdinger case, with |[v] =1.

The degeneracy of all states is given by 2&+]. Are also given the ener-

gy in eV for each state, according to expression (3.10).

> > > 2
mz Ao 66 -eD]” - 3‘i— v o= Ep . (3.12)

Again, we treat first the states with 7= |g| - 2 (or F=0), whose
wave sections are given hy

b, =fle)n (3.13)

W th the spinor monopole harnonics n, def ined by (A.10). Wsing proper-
ty P.6 of the Appendi x and putting p = 2(-2ME)1/2w (E<0), we obtain
the radial equation

r
’]?itp“z—]f-[%-l}fﬂ) (3.14)
p* dp dp P

where y = Aez(-ZME)l/Z/ZE. However, this equation does not have any

solution that fulfills the boundary condition
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F(0) =0 (3.15)

This occurs because the Hamiltonian corresponding to (3.12), is not a
properly defined operator for treating wave sections with angular de-
pendente of the type of that given by (3.13). The reason for this s
contained in the discussion of Lipkin, Weisberger and Peshkin!! , who
pointed out that the Jacobi identity is not satisfied for the compo-

- > >
nents of I = p - e4, that is
[[Pupz] ,P3] + [[Pz’Paj -PJ + [[:Pa’ 1] PZ] = "”@6 )

(3.16)

For the Schr8dinger case, the Lipkin Weisberger and Peshkin
difficulty does not appear, since all wave functions vanish at the ori-
gin. However, this does not occur in the present case and, to remedy
the situation, we must?? provide the electron with an "extra"™ magnetic
moment so that the total magnetic moment, in Bohr magnetons, is given

by
1+ « (3.17)

where Kk is taken to be infinitesimal. With this assumption, the Pauli

equation (3.12), now, becomes

(] > > 3 )
> >
By E'im B(p-en]2+ KZ\)M (;3” - i }\p =EY, (3.18)

and the radial equation (3.14), in turn, is

B
a1 [ 2d -[l-l+_£_] -0 19
7 o [p dp:,f P f ) (3.19)
with B, an infinitesimal given by
[v]
80 =T K N (3-20)
where we made use of the Dirac quantization condition
2lql = vl - (3.21)
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The solution of this equation that fulfills the boundary condition

(3.15), is

- s
£(o) =ep/2p1F1 (<Y + S+ 1, 25+ 2; p) (3.22)

wher e
_ 11/z2 1
S = (B + zr) 5 (3.23)
is also an infinitesimal. The correct behavior at p»~, requires that

“Y+S+1= -y+1l=mn (3.24)

where n is a positive integer (n = G,1,2,...). In this case ,# is a
po ynomal of degree n, and we have

N/ SCR (3.25)
2 (n+1)?

E =

V¢ remark that these energies are independent of g and identical wth
the Balmer energies. In figure 2, where the energy spectrum of the
Pauli spin case is represented, those energies correspond to the N= O

t ower .

The states with jx]g| + 1/2 are discussed next. In this case,
we have x = O(see eq. 2.2p), and then the two possibl e wave secti ons,
whi ch now are K-independent (see eqgs. 2.17 and 2.18), are given hy

T I N Qg

am

2) g2 (3.26)

Jm
Using the properties P.7 to P.10 in equation (3.19) with the wave sec-
tions above, and putting p=2(-ME) 1/2 and Y=7\e(-2ME’)1/2/ZE, we obtain

two 2™ order differential equat i ons

5‘-[%5 o* %ZB] s - &"%*%r AU TR,
(3.27)
with
= [ ? (3.28)
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0,85 0,70 0,69 0,68
! — : (6) {10) (14)
1,51 ::; LI (6) LI3 o) LI3 _(7)
2,34 ) 2,27 (5)

6,8|

(3)
13,6
- -
N=0 N=I N=2 N=3
Fig.2 - Spectrum corresponding to the Pauli case, with |[v| = 1. The
lowest state in a tower is 2¥+1 degenerate; the others are 2(2¥ + 1).
Also given are the energy in eV for each state, according to expres-
sion (3.30) and (3.31).
ulp=1) = ¥(@+|v]) - [1v(1v+]v[)]1/2 for 7 =1
()
By = = , (3.29)
/ .
w(u+l) = ¥(+|v]) + @E+v)]Y? for i =2,

and where we take the infinitesimal extra magnetic moment K to be zero,
since for the states under consideration, the radial wave sections va-

nish at the origin. The corresponding eigensolutions are

FV (o) = 1 P2 Fo(y 4, 205 p) (3.30)
with
24
E7(1)=-M—; =Y'11,7L1=0,]»29
2(ny+4)
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and

B o) = oH P2 Fol-Yy + 0+ 1, 20+ 2; p)

with (3.31)

2 4
E(z) oo MMe' 3 m, = Y-u-1; n, = 0,1,2,

2(na+ 1 +1)2
Then it is clear that, for a given j-value, with the exception of the
n =0, all the other states show a double degeneracy, besides the dege-
neracydue to theangularmomentum, given by 2j+}. Using (2.7}, and
taking into account the Dirac quantization condition (3.21), one ob-
tains 24+l = 2§+|v|. The complete spectrum with the respective degene-
racy, for the case with [v|=1, is given in Fig. 2. Notice that thereis

no accidental degeneracy, as is the case in the H-atom.

Let us now compute the fine structure corrections for the
states with jzlql + 1/2, which are those that have double degeneracy,
for v=1. These corrections can be obtained by using perturbation theo-
ry, and considering as unperturbed states those solutions to the Pauli
spin equation (3.18) with k=0. The perturbation operator is obtained®®
by making the non-relativistic limit of the Dirac equation, and taking

only the second order terms in (1/¢). So, we obtain

1 [, 2 e +—>]2 A Ez 3;] QT >
Ve-m E+22 -2 53|+ 0.l +q 2| + 295 .32
17N r 2M b2y’ % oM? (r) (3.32)

where E is the energy, B is the magnetic field of the dyon, _L> is the

orbital angular momentum operator, given by

-
> > > > K
=7 x (p-ed) -q T, (3.33)
and
a=e’ = 1/137
For the states with jzlq[ + 1/2, as already discussed, the-
re are two possible wave sections, given by (3.26). Then, the fine

structure corrections can be obtained, for the two cases, by compu-

ting the mean value of the perturbation operator
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AE(i) -« W;:;)IViW}il) >; 4 o=1,2 . (3.34)

Using the prqperties P.7 and P.8, and the orthogonality of the eigen-
sections & t)’s, we obtain

= 7.7 2 . 2
E(” + A2%a2 <™ 4 2E(7’)>\a <p” 1> 3 levg) ® <r—“‘>—! +
_ Ly? ._I

2@ oL

N PN (3.35)
Ly?

where F'(i) is given by (3.30) for Z=1, and by (3.31) for ¢=2. The last
term of (3.32) does not appear, since the ¢ Z) vanish at the origin.
The mean values <r-n>, can be calculated making use of the well known
integrals involving confluent hypergeometric functions'®. The final

results are

JUCO R 'LC Y L S S S 3 R
2(nm)? [ -3 b)) (2u-3) (2u-2) (2u-1) (2) (2u4)
2(;- 0 +s?(f + &
- ‘ ¢ 222 ? | (3.36)
2(n +u) (2u-3) (4p®-1) wp) 1)
and
() MOt [ . 3 .

2(n,+u41) 3L(u +5) u(n2+u+1) (2u-1) (21) (2u+1) (2u42) (20+3)

(3.37)

| s%j-@-cﬂj+9}

2(ny+ue1) 2 (2043) (bu-1) w( o+ 1) (20 + 1)

where ¢ , & and ¥ are given, respectively, by (A.13), (A.14) and (3.28),
and use was made of the Dirac quantization condition (3.21) with Vv=l.
These corrections eliminate the double degeneracy that was present for
all states with #21 and n, + 1 =n B 1 (see fig 2), giving rise to an

energy spiitting, given by
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az = ae?) o) (3.38)

By substituting AE(Z) and AE(I). eqs. (3.36) and (3.27), and expres-
sing c,s and J in terms of ¥ (eqg. (3.28)), we get

A M(pa)* 32u° - 104u® + 87 3
2(ny+u1) " (2B -1) (W2=1) (B0%-9)  (mp+bie)) 2 (Bu®-1) (4n2-9)
_ (+t2) 72 (<16u" 4240 ~6u243041) + (8u"-12u3+5u3—6u+2)] (3.39)
u(4u®-1) (u%-1)
Table 1V shows the calculate AZ splitting for a number of
states.

Table iV: Tipycal 4F values for some states, given by expression (3.39)

States AE [eV]

(ny,m,) V= N =2 =3
(o0 ,1) 2,7 x 1073 7,4 x 1075 4,1 x 1078
(1,2) 9,7 x 107° 3,k x 1073 2,2 x 10-°
(2,3) 4,5 x 107° 1,9 x 167° 1,5 x 107°

Note: These results hold for the case with v = A = |.

Finally, let us discuss an interesting feature of our system
namely the existence ofanelectric dipole moment. This is due to the
fact that our system violates the discrete symmetries P and T , as
discussed by Kazama'* for the Dirac electron. W shall determine, in
our case, the magnitude of the effect by computing the matrix element

> >
of the electric dipole moment operator d = er for the lowest statewith

3= lql - 1/2:
<§>m =e S dx U » WEETENS (3.40)

where \Pm = f(r')nm, with f given by (3.22) and N by (A.I0) of the Ap-
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pendix. The angular part of the integral can be computed, using the
Wigner-Eckart theorem and properties P.Il to P.13 of the Appendix. On
the other hand, the radial integrals can be calculated making use of
the well known integrals involving confluent hypergeometric func-

tions'®. The final result is

2
dp =-3 4 I _<2_+_1%_ (3.41)
lq] Mex [q] + %

where n is the radial quantum number, and the range of m is
1 1
mo=lal -3 ,ldl -3, -lal + 4 (3.42)

It may be remarked that the infinitesimal extra magnetic dipole moment,
introduced to resolve the Lipkin, Weisberger Peshkin difficulty, does
not alter the result (3.41). Rewritting the result in the usual wuni=-

ties, we have

<d_> =-.3_._‘l_i£_m(#_l_}_ (3.43)
ol 2a o lql =1

where Afe = 3.9 x 107 cm, is the reduced Compton wave lenght for the
electron and a = e? = 1/137. Using now, the Dirac quantization condi-

tion (3.21), then

<dp = -8.01 x 107° o m__ln+l)? [e.cm) . (3.44)
¢ vl vl + 1 A

This electric dipole moment, valid for the Pauli electron, is tipical-

ly of order 10-° [e.cm].

The analogous result for the spinless electron is

<d = - 5.3k x 107 ‘—;’—' m [(Iql R XCTRS SRCREY

f_e.cm:] (3.45)

where now the range of m is
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m o= lql 5 lql -1,..., -lq| (3.46)

This electric dipole moment is also typically of order 107° Ie.cm[.

4. CONCLUSIONS

As we have shown'® in the preceding sections, the monopole
harmonics provide a simple and elegant method for treating the Pauli

spin equation in the presence of magnetic monopoles.

The results obtained for the two problem discussed in this
paper are in agreement with those derived in older literature®® Ho-=

wever, they were here obtained in a much simpler and direct way.

tn connection with the electron-dyon system, we have exten-
ded previous treatments by calculating fine structure splittings ofthe
jzfql + 1/2 levels and the expectation value of the electric dipole

moment operator for the ground state of the system.

Finally, we wish to stress the desireability of extending
the present treatment to the Dirac equation with a repulsive hard-core
similar to that empioyed here to estimate the binding energy of a u(n)

magnetic monopole to a spin 1/2 atomic nucleus.

APPENDIX

The most relevant definitions and formulas on monopole har-
monics are included in this part, specially those on the spinor mono-

pole harmonics that have been used in the text.

The (scalar) monopole harmonics Yq 2 m are defined as the

[ Rad ]

simultaneous eigen-sections of the angular momentum operators L? and

LZ (see equation 2.3 for the definitions of E)

L}

2 <
4 Y 2(z+1)yq£m
(A1)

L = mY

qu m qim
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where £ = 0, 1/2, 1,. .., and for a given R m = -R,=&4+1,..., R Given

q, the possible R values are
=gl lal+1, ... (A.2)

For explicit expressions of the monopole harmonics, the reader is re-

ferred to the papers of Wu and Yangl.

The spinor monopole harmonics, by the other hand, are defi-.

>
ned as simultaneous eicjen-sections of the operators J% and JZ (see

equation 2.2 for the definitions of 3)

32 4(2) )
= ) o
LA J G+ qdm
(A.3)
7, ) 2 @)
Z qgm qJm
where i = 1,2 refers to R = j i 1/2 respectively, and with
(Z) [ 1 1 .
¢ o= ] jtzmg =m lgm| ¥ .1 X
qam m.+m m 2 % 2 0 J Ta,dEy,m tm
(A.4)
Explicitly, we have
. /
J+m 1/2Yq,j_ 5, me
o1 _
qJm
l/2 1
( ) Yqyj - %" m + T
-
and (A.5)
J-m+l 12 4 1 1
(ZJ+ 2) q,§ = 5.m + 5
o2}
q,d.m
: (j+m+1)1/z . L
27+ 2 q,d+5,m+ 5
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where the possible j values are given by

=l +0-5 (A.6)
such that, for
o) Lwan, 2,3, (A.7)
qam
and for
22 L p=o0,1, 2, (A.8)
qagm
The collection of all <I>(7’)’s form a complete orthonormal set of two-
-components spinor monopole harmonics.
For g=0, the monopole harmonics are simply the ordinary
spherical harmonics, and the following properties hold:
> > (1) (2)
S o=~y O,
(p.1) (o.r) (qum N
> > (2) (1)
.2 or) 0 =-r O,
(p.2) (o.r) pp p
From the expression
72 =02 -351 _ 3 (A.9)
one has
22 () _ e el el ol o
(P-3) L qum - (J 'i)(J""z‘) q)qjm 1 9’ + 2 ’ L 0"; ,.'..
2y (2) L dyes 3y e(2) o L _
(P-l") L éqjm - (J+'2‘) (J+2) (qum s d L 7 L "Z,Bv'

When q#0, the lowest angular momentum state occurs for j =
= lql - 1/2 (or N=0) and the corresponding angular section is given
by

_ (2) . i
= = - = . A.10

In this case, the following properties hold
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(p.5) G.r)n, =r-Ln

lg] ™

> > > A _
(P.6) 0. (p-2]e|A)f(x)n, = -1 -l-q— (2, + ¥ f(e)n,
q
For the higher angul ar nmonentumstates (72|ql+1/2 or m31) ,
it is convenient to f(o;n%S the following orthonornal linear combina-
tions of @4\ and @'2
° QIJ”’ @QJ”I

(1) _ a0 s (2)
Egim = in ™ oo (A.11)
(2) _ _,(1) (2)
qum = sq)qjm + c@qjm (A.12)
wher e
o [@ineg? « (in-29)V7]
C = — / (A-IB)
lal 2(24+1)1/2
and
(25+1429) V2 - (25+1-29) 12
, . [ (j+ o7 (A 14)
lq] 2(254+1)12
with e?2 +s2 =1 Inthis case, the followng properties hold :
>0 () (2)
(P-7) (O.I’) qum = -r gqjm
> (2) (1)
(P.8) (o.r) qum = -r qum
> > (1) . 1 (2)
(P.9) o.(p-Zle|A)f(r) Egjm = L@ Lopr=1) £(r) Egm
(P.10) 3.(5—2[@]2)9(14) Eq(;; = 7,'(8P+r'1+ur'1)g(1°) gé;rzl
with f(r) and g(r) arbitrary functions of the distance r, and
1/2
p= EV(N + [Zvli} (A.15)

where we have used the Drac quantization condition (2 13).
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Finally, we give three importants properties16 of monopole

harmonics, that have been used in the text.

1
(P.11) (53—11 % Y., = cose
= (-1)91M
(p‘]Z) Yz,'@,m - ( l) Y—CI)Q’:-m
/2
_ (zz+1)(zz'+1)(22“+1{]‘

(P-]3) J Yq,l,m Yq',l',m' ‘qul,lll’mll an = [ by x

Lot TR

Lf 421
x : (-1)
m ml mh q ql qn

where the large parentheses represent the Wigner 3j-symbols.
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