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An algorithm is proposed for reconstructing the potential
g(x) in the one-dimensional stationary Schrb'dinger operator E=-d?/dx?
+ g(x), -w<x<eo, with the reflection coefficient and the other scatte-
ring data as input. Preliminary experiments have indicated computing
time savings of order as high as 10:1, as compared to the direct so-
lution of Marchenko equations. Some open problems within thiscontext

are posed.

Propomos un algoritmo para, a partir do coeficiente de re-
flexdo e dos outros dados de espalhamento, reconstruir o potential
g(x) associado ao operador de Schro':)'dinger estacionéario emuma dimensao
E = -d%/dx® + q(x), -w<x<e. En testes realizados, obtivemos uma eco-
nomia computacional da ordem de 10:1 relativamente a solucdo direta
das equagoes de Marchenko. Mencionamos também alguns problemas am

aberto nesta area.

1. INTRODUCTION

The one-dimensional scattering problem has been a source of
deep investigation lately. This renewed interest partly results from
the discovery' of the connection between that problem and the Korte-
weg-de Vries (KdV) model for long waves. The latter is a non-linear
equation with a wealth of properties, some of which quite unexpec-
ted,2’3°" |ike its relationship with inverse scattering (IS) itself:
it lets one trade a non-linear operator (viz, the solution of an ini-

tial value problem assigned to a non-linear partial differential equa
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tion) for a sequence of linear transformations {(the solution of the
IS problemvia Marchenko equations). A nore precise description of
such a link follows:

Let u(xz,t) satisfy the KdV equaticn

s
- = - < < - 1
Up T oUs U o , o< <o ¢330 {1

and consider u/6 as potentials for the Schrodinger equations:

a2
_Ly+__6__u(x’t)y=k2y, t 20 . (2)

d'xZ

Then the tine evolution of the scattering data® associated to (2) is

extrenmely sinple, Of. Ref. 6:

i] The reflection coeffici ents® sati sfy
r (k,t) =r-(Kk, 0)exp (-28k3%) (3)

whi | e

ii) The transmssion coefficients are time invariant and
so are the point spectrum and the normalization constants®

{)\j(t),mj(t)}}<jslv(t) :

P\j(t)=kj(0) s mj(t) = mj(O) s d = L, u(E) = B (o)

Consequent |y, to sd ve (1) subject to
ulx,0) = ¢z) , -e<z<e (4)
the following path is pointed out by the above result:

a) first get the scattering data in correspondence wth
u(z,0);
b) followtheir tine evolution according to (i) and (ii);

c) for any instant #>0 at which u(x,¢) is sought, solve the
inverse scattering problem associated to the data found through (b).
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We emphasize that steps (a) and (b) are straightforward and
even step (c) may be considered as an easy one when compared to the sub-
tleties involved in the direct solution of (l1)and (4). Indeed, a quite
natural way to deal with (c) is to call the Marchenko equations for help,
and in this way a family of l<near integral equations is brought in. Ob-
serve that their kernels are variable and so are their interval of in-
tegration (which, by the way, are irifinite). Each problem is neverthless

a linear one.

This discovery led to a whole stream of search for 'inverse

transforms', see Ref. 7,8.

Efforts spent in seeking an efficient algorithm to solve the
Marchenko equations would be fully justified even if the relationship
KdV-1S were the only use of those equations. Nonetheless,a long list of
other contexts where 1S - and thus Marchenko equations = shows up is

g
well known™.

In the next section we present a numerical algorithm develo-
ped with this aim, while in Section 3 we point out some topics conside-

red to be worth studying.

2. THE ALGORITHM DESCRIPTION

In order to numerically solve the one-dimensional S problem
we have to:
a) Solve either one of the Fredholm integral equations (due

to Marchenko)

too

Q (z+y) + B (x,y) * J Qi(x+t+y)Bi(x,t)d1: =0, *y20
o

(5),
for Bt(x,y) as functions of y, x being kept as a parameter;
b) differentiate B,(x,0) to obtain g(x) from
q(x) = % 3,B{(x,0) (6)1-
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Solving (approximately) either of equations (5)i by Nystrtlr:m
quadrature technique amounts to solving a finite linear algebraic sys-
tem whose order depends on both the accuracy we need and the behaviorof
the functions ©,_. Also we need to solve these equations for a large num-
ber of values o; X, as numerical differentiation is known to be a ra-

ther unstable procedure.

In this section we shall describe a simpler algorithm forthis

problem, using an idea originally suggested by V. Bargmann and carried

out by I. Kay'®.

From now on we shall deal with Marchenko equations (5)+ re-

placing B+ by the function K introduced as
Klx,y) = B, (x, L5) / 2,
+ 2
and taking instead of R+ the function

w(g) = Q+(t/2)/2 . (7)

With these changes of variables, our working relations beco-

(e
w(t) = 2]— } r+(k)e7’kt dk , (8)
u -CO
{ee]
k{x,y) =f w(t+y) K (x, t)dt+w(a+y) = 0 , x<y (9)
x
and
¢@) = - 1L k(z,) (10)
The basis for the algorithm is the observation that when the
reflection coefficient » is a rotational function of k with all its

poles in the lower half plane, an explicit formula for g(x) can be ob-
tained. Observe that the analyticity of » (k) for Im k>0 implies that ¢

vanishes on the negative axis, if no eigenvalues exist.

Since r is rational and analytic for Im k>0, it has theform
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=

7
I (k -y,
o L . ()
(k- csj)

I‘_(k) = r

with #<z, and Im 6?;<0. Now, basic properties of the scattering matrix
inply that the relation

t(k)t(-k) = 1= (K)r (-k)
hol ds on the real axis. Then denoting the roots of
1 -7 (K)r (-k) =0

located in the upper half plane by 04 and assuming that O , we
get

(k'pj) (k+pj)

L
t(k)e(-k) =1 (12)

(k-6j) (k+6j)

for real k.

If there are no ei genval ues, t{k) is a non-vanishing analy-
tic function in the upper hal f-plane; as a consequence of (12), ¢ nust
have the form

Lk+op.
t(k) =1 J

k-6,
J

V1t is known that on the rea axis

rtk) = -»7(-k) t(k) /4-K) ,
so that
M L
I (kW YT (R4 )
Ay = (-1 g, L__J_r____J_

k- 8 )Mk-P )
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Corisequently

(el
™
~
—~

=3

i

©
~—
—_
w
~

¥ (k) = p(k) +

where p{K) is analytic in the upper half-plane.

Substitution of {13) into {8) gives

L 0.t
w(t) =< ) P.e 9 , 20 . (14)
[

Using this relation in (9) we get that for 0ga<y

L ('-‘° 10 .t Py
Klz,y) +2 ) p. 1] e I K(e,t)dtte ¢
J s
L 1P 1Py :
+ i Ape 7 e ¢ =0 . (15)

Therefore, in the range 0sx<y, X is a kernel of Pincherle-Goursat type,

that is, it has the form

L 0.y
Ky = £,@ e &, (16)

and thus, suhstituting (16) into (15) we get the L XL system

(P .+ .
) L ez(pJ 0,)% o ‘
Fie) 5] e f @) = -iP e Can
¢ Y m p. + pm ¢

By using Cramer's rule and (10), one obtains from (i17) the expression
d2 17, 8
q{z) = -2 = log det{I-4(z)] , (18)
CZxZ
where 4 = {a .vf) is the matrix associated to the system (17), namely

‘7, ( pj+.0m)m

&
1
t

|®

Observe that the order of this matrix equals the number of poles of
r (k).
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Although (18) is theoretically simpler than (17), this latter
formula has more computational interest than the former. This can be
seen as follows: setting y=¢ in (16 and differentiating, we have

d P&
T K@m) = 5 fi) + dode , (19)

for £20. To compute the values of f4(x) we differentiate (9) and (16)

with respect to £ and obtain

00

3, K(z;y) + j w(t4y)d K(x,t) - wiz+y)K(x,x) +
X

w'(x+y) = 0, (20)

and

ipjy
9, K(=,y) = ¥ filz)e

If we now use this last expression and (16) in (20) we get the follo-
wing system for fé(x):
7(pg+p, )2

Fi@) - B 2 fr@) -

ip 1P x
e Yo+ Lf (@e ™ ). (21)
J m
m
Notice thet the coefficient matrix in (21) is again I-A{x), so that to
get the solution for this system after having solved (17) is a computa-
tionally cheap task. Moreover it avoids having to numerically carry out

the differentiation in (10).

- +
We observe that passing from » to r makes it possible to
obtain (18) and also makes the derivation of (17) quite simple. Never-
theless, a system analogous to (17) can be obtained by making use of r-

only, Cf. Ref. 11.

We have solved numericaily the inverse scattering probiem by

irnplementing both (9) and (17), for some rational coefficients re. In
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dealing with Marchenko equations directly, we discretized (9) by using
Simpson's formula and we needed a 60-point mesh to obtain an accuracy
of 107% in the average. The second method, even for L=8, was ten times

faster than the first.

As it stands, we can use the second method only for rational
reflection coefficients. When solving the inverse problern for a reflec-
tion coefficient » which is analytic in the upper half-plane, and if

there are no eigenvalues, we can use the following numerical rnethod:

(a) approximate v by a rational reflection coefficient roo,

which is analytic in the upper half plane,

(b) solve the inverse problern for r. by using the algorithrn
described in (10}, (17), (19) and (21).

Theorem 3 in Ref. 9 gives us the conditions on the approxi-
mation 7 under which we can expect the potential qg to be close tothe
potential q we are seeking. The main difficulty is that the common tech-
niques for approximating a given function by a rational one, e.g. the
Rehmes algorithm, can be applied only for real functions, while the re-

quirement that all poles of . lie in the lower half-plane prevents us

€
from approximating the real and the imaginary parts of I separately.

The following is a possible strategy for solving the approxi-

mation problem:

Restricting ourselves to reflection coefficients r that die

out like
r(®) = o(lk [T, k] -, (22)
define )
R(k) = (k+t)r(k)
and, for w = eie , the Cayley-transforrn type change of variables
s(w) = R& %}
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By (22) s 1is continuous at w=l. Thus, obtain trigonometric approxima-

tions

n _ ,
s{w) ~ T apw T ane'me

for s and define

_opomd k=d)
0 =g e, [
as the sought approximations.
3. SOME WORTH SOLVING PROBLEMS
It is our opinion that the following questions deserve in-

vestigation.

Can the algorithm described in Section 2 give better ap-
proximation results if instead of defining r, with an m-th order pole
one gets its poles spread out in the lower half plane? How to achieve

such an approximation scheme?

Stability results for direct and inverse scattering arera-
ther scanty in the literature. In particular, some of them, like the
one by Lundina and Marchenko'?, suffer from the following ailment we
often have found in the treatment of many questions related to inverse
problems - see also Ref. 13: the general setting is to investigate a
mapping from accessible data {¢} into sought data {f}. Hypotheses are
then made on {f} without knowing how these can be read out from the in=
formations on {¢} one has at hand. Of course, results gotten in this

way are barely useful.

In Ref. 9 two stability results were presented, one for
direct and the other for inverse scattering in the one-dimensional case.
By no means was that a thorough treatment for the problem, and thus the

questions below are naturally raised.

i) Particular distances were introduced inorder to reach

those results, namely, for the direct mapping
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lally = swela@)] + [ leq)ldsswp a?lqte)| ,  (230)
- .

| zj 7t (k) |2 dx (23b)

were taken, while for the inverse mapping we used

gl = 1 27 sup gz} (24a)
| n=1 NN

(that is, uniform convergence on compact sets) and

r(x)
E + - Yoy Lt (Y !
Iir “1, E sup§F+(t)| +J !w+’(u)=dt (24b)
t -0
where
o 24kt
. . o+ 2¢kt
r+(t) = v (k) e dk (25)

Are there other metrics better suited to the problem? iIn particular,
can one deal with the same pair of metrics for both direct and inverse
problems? (In other words, does a homeomorphism between the set of po-
tential and of scattering data exist?) Must one definiteiy get rid of
more famiiiar norms within this context, that is, which negative stabi-

lity results hold?

ii) The above mentioned continuity properties were only shown
to hold for some sets of potentials and of scattering data, while both
direct and inverse mappings are defined on nuch bigger sets. This is

another way in which such results may be improved.

Deift and Trubowitz'" exhibitted another approach to one-
-dimensional scattering. Is their treatment amenable to nurnerical stu-

dies and to deduce more stubility facts?

. As far as we know, no stability results exist for the three

-dimensicnal case, in which some light was recently shed by the disco-

veries of R. Newton'®.

. We close this section recalling that a list of other im-
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portant questions were posed during a meeting of the American Mathema-

tical Society in Bloomington, April 1980, Cf. 16, page 526.

Section 2 is part of a Ph.D. thesis®’ written at the Courant
Institute, under the guidance of P.D. Lax {(NYU) and Jerry Goldstein

(Tulane), for whose encouragement the author is indebted.

The computational tests wave carried out on a CDC-6600 ofthe
Energy Research and Development Administration computer facilities at

NYU.

Financial support granted to the author at different stages
of the research by CNPg, MIR. Exteriores, UnBand NYU is also acknow-
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