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Upper and lower bounds for the energy eigenvalues in Sch8nberg's
perturbatiori-theory ground state are studied. After a review of the cha-
racteristic features of the partitiuning techniques the perturbative ex-~
pansion proposed by Schdnberg is generated from an exact operator equa-
tion. The upper and lower bounds for the ground state eigenvalue are de-
rived by using reaction and wave operators concepts, the bracketing func-

tion and operator inequalities.

Apresenta-se um estudo de limites superior e inferior para o0s
valores da energia do estado fundamental na teoria de perturbacdo desen-
volvida por Schtinberg. Apds uma apresentacdo dos fatos caracteristicos do
método de particdo, as expansfGes perturbativas propostas por Schtinberg

sdo obtidas de uma equagdo exata envolvendo operadores. Os limites supe-
riores e inferior sao determinados usando-se os conceitos de operadores

de onda e de: reacdo, a fungdo "bracketing” e desigualdade entre operado-

res.

1. INTRODLJCTION

In quantum theory, the energy values of the stationary states of
a physical system are determined by the eigenvalues E of the time-inde~

pendent Schr8dinger equation
H jy> = E |y> (r.m
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where the Hamiltonian H is a self-adjoint operator (' =H).

For the atomic and molecular systems, tha ground state and lower
excited states correspond to a setof discrete energy leveis. The asso-
ciated Hamiltonian is hence bournded from below, and the spectrum starts
with a set of discrete eigenvalues. in addition to the closed stationary
states, there may further be scattering ststes connected witha contintous
part of the spectrum. In this paper we wi?l focus our interest onthe dis-

crete energy levels only.

In general, it is very difficult to solve the time-independent
Schrddinger equation exactly. Perturbative treatment and variational me-

thods are usually used for determining approximate solutions of Eq.(i.ll.

In the long history of the use of perturbation theory various
different. perturbation expansions® have evoived, edch oF which has its
own particular advantages in solving particuldr physical problems. In
atomic and molecular applications the cemmonly used perturbative expan-

sions are those obtained from Brillouin® and Schridinger® theories.

Some time ago, SchBnberg proposed a modified perturbation theo-
ry*. in our opinion, this theory has not been sufficiently explored inits
application yet. It has the advantage, over Brillouin and Schr&dinger
procedures, of permitting an immediate formulation of a dynamic treatment
from stationary theorys. Furthermore, we foiind that it can be applied sa-

tisfactorily to the atomic and molecular systems.

The problem of finding convenient bounds in Schr8dinger and Bril-
Touin perturbation theories has been discussea by L&wdin in several pa-
persE_9 In order to make applications of the Schbnberg theory andto com=
pare its results {accuracy, rapidity of convergence) with those obtained
by using SchrBdinger and Brillouin expunsions, it is important and beces-
sary to know the expressions for upper and lower bounds of energy eigen=-

values in tnis theory. This is the basic purpose of the present paper.

ir our study, we wili use the partitionin¢ technique developed

7,106,511

by Lowdin From this method®, a function
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can De constructed, where both E, and & are real variables. These varia-
biés have the property that at least orie true eigenvalue E of ¥ should be
contained in the interval ((—“.,81). Hence, it is possible to determine upper
and lower bounds, and the main problem is to evaluate the quantities in-

volved.

2. PARTITIONING TECHNIGUE

Tho partitioning technique for solving the Schrdinger equation
(1.1) where > is subjected to certain boundary conditions {(for closed
states one will assume that the normalization integral <1;’le})> exists, whe-
reas, for scatter-ing states cne will assume that [q» itself stays finite
at infinity) is based on the use of a normalized reference ket j¢>in Hil-

bert space H, a variahle & and a reduced resolvent T.

If 0 = 16> <¢l is the projection operator on the "reference spa-
ce" Hy and E = 1-@ is the precjection operator for the orthogonal compte-

ment Hz, one has, for the reduced resolvent T , the definition®
T =P [0 +P(e ~H) F] 'P (2.1)

where a is an arbitrary constant different from zero. The Hilbert space
H is "“partitioned" into two subspaces H: and H,, i.e., it is the direct

sum of Hy and H,.

it is shown® that the operator F satisfies the following alge-

braic relations

of =T = 0 (2.2)
pPle-H)T = P (2.3)
Z =0, for akl (2.4)
9T _ _ .2

=T . (2.5)

Using the reference ket |¢> and the cperators # and T it is pos-

sible to define a trial ket ]¢E> in the space H through the relation5’7,
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[w> =@ +718) [9> . (2.6)

It satisfies the intermediate normalization <¢ 1lj)p> , useful in all

parts of the spectrum.

According to (2.3), it follows that

P(e-#) |y_> =10,

and this implies that

(E-H) 0> = (0+P) (E-H) |v,>

0(e-H) ’|1p€>

16> <o (e-8) v >

(e-e ) [¢> (2.7)
where we have introduced the notation e, = <¢]}1[Lp€>‘

The relation (2.7) shows that the trial ket ]lJJE> satisfies an
inhomogeneous Schr8dinger equation, which reduces to the eigenvalues pro-

blem (1.1) only in the special case when E, = E = E.

The quantity €, given by the relation

€y = <¢IH|1P€>
= <ol + 2P0 + P(e-H)B] ™" P}E|¢>
= f(e) (2.8)
defines a function €, = f(€) of the variable g(~=<E<®). This function

will define the eigenvalues of H as solutions of the equation
E = f(E)

From (2.7), with E = f(E), we have (E-E) |wE> =0 .

From now on, we concentrate our interest to regions where the

trial ket ]IPF> is normalized. One gets directly
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<¢|¢> + <THO|THG>

<P lv>

| + <THO|THG>

and the quantity <TH¢]TH¢> measures essentially the contribution from the
orthogonal complement to the trial ket. I|f <TH$|TH$> <1, one speaks of a

""good" reference ket for the state under consideration.

For the derivative of the function (2.8) one obtains according to
(2.5)

f'(e) = ~ <¢|HT?H|O> = - <THO|TH$> <O

so that the derivative f'(€) is negative. The curve for E, = f(€) is hence
monotonically decreasing and, further, has a series of vertical asymptotes

for as many E-values as eigenvalues of the operator # = PHP.

Let us now consider a continuous part of the curve E, = f'(E) as-
sociated with the eigenvalue E. Putting e =E + 6, £, = E + 8,, and using

the Lagrange mean value theorem, one obtains from (2.8)

E+8,=FfE+8B) =f(E) +B.Ff(E+ 8B

B, =B.f' (E+6B) , 0<&8<1.

Since f' is negative, this result implies that B and B8; have dif-
ferent signs, and that the numbers E and ¢, bracket at least one true
eigenvalue F. Because of this bracketing property, the function g, =Ff(g)
is often called the "bracketing function™. If E is an upper bound to F ,
the quantity g, will provide a lower bound, and vice versa. In our discus-
sion of the bounds to energy eigenvalues in Schbnberg perturbation theory

we will use this property of the function £, = f(e).

3.PARTITIONING TECHNIQUE AND PERTURBATION THEORY

Ve will denote the eigenvalues (eigenkets) of H and H, by EQ

stf) and E [q)z(o) , respecrively, i.e.
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wlo> =2 g el =20, s e a0, 2,00 )
e TR Fol¥y “2 2 T T T S :
In perturbation theory one starts from the general assumption

that tiie Hamiltonian has the form
H=H +7V (3.2)

where the first term i, is referred to as the '"unperturbed Hamiltonianr

and the second term V is called the '"perturbation”

in the conventional approach, one considers often the Hamiltonian
Hy =4, +X2 ¥ where A is a variable parameter, and one tries to expand the
eigenfunctions and eigenvalues of H, into power series in Xx. in Schbn-
berq's perturbation procedure one considers H=R +V = J +1, where J

: - H 0 N
is such that J[q)yl(o)‘z = E,,N)é )>. The expansions are given in powers of |.

in order to obtain Schlnberg's expansion by means of the parti-

tioning techiiiaue, we wil! consider the Hamiltonian written as the sum of

two terms
A=A, + 5 .
1, + d’p (3.3)
where
0 (o
Hii¢é > - holo, > (3.4)
with
Vim Ay = 2" (3.5)
H*H
0
tet us assume that the reference ket |¢> is H)Q(o) , @ normali-
zed eigenket of 4, associated with the eigenvalue ER . Then, one gets
For © and P
0} (o)
0 = [¢, ><¢, b
and
(), ., (0
P= ) o > <dy) . (3.6)
R#R

Acccrding to (2.6) and (2.7), one obtains



oy (0)
> = 0+ 72 ) o, (3.7)
and
(0) - L (9
€ =z < ! £ FH O 4
. }g + <6 [Hp + Jp T 1p,¢2 > (3.8)
Introducing the reaction operator £ and the wave operator W by
t=H +H TH .
p BT E, (3.9)
and
w=1+T4H |, (3.10
. )
we have from (3.7) and (3.8)
(0)
> = >
W = wlo, > (3.11)
g, = hy + <¢é°)lzf:1¢é°)> : (3.12)
The operators W and ¢ will here be considered as functions of the parame-
ters E.
The operator T is essentially an inverse operator and, in this

connection, we note the operator identities
4-8)"7= 4 +47'B (4-8)"" (3.13)
(A-B)"' =4+ (4 -B)'BA! (3.14)
which are valid provided that the inverse operators involved exist.

in order to obtain perturbative expansions it should be observed

that one has for T the transforrnation

w3
1]

P[00 + P(e - )P -PH Pt p

P lab + P(e + A - )P - P(HP+A)PJ‘IP,

(3.15)

where A is a real variable.
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Thus, if one applies the identities (3.13) and (3.14) to the ope-
rator T with A = 0@ + P(e - A - Hi)P and B = P(Hp + h) P one obtains

T =Ty, + Ty, Hé T (3.16)
or

T=TA +TH /\7, , (3.17)

where

-1
Ty, =P [00 + P(e + A - Hi)fﬂ pl (3.18)
and
H' = H + A, .19)
b=, (3
Repeated use of (3.16) leads to the infinite expansion
7 = Y (. B0 T, .. (3.20)
n=0 A 7p hi

Using the definitions (3.9}, (3.10) and the expansion (3.20), we

have

v n
wo=1+ ) (TM HZ; Thg Hp (3.21)
n=0
n

t =H HY T,.H) . .22
p Or 10y 80" 1y B) (3.22)

Substituting expansion (3.21) into (3.11), and (3.22) into (3.12),

we obtain the fundamental formulas

co

(o)
v = [ +nzo (7). Hpr)” Ths Hpjl% > (3.23)

e, =h, + <¢2 Il + Z (Tp; Hé)n ||¢(°)

(3.24)

These relations are the perturbative expansions obtained when

+Hp’ where H is sush that H |¢ (°)>_h I¢JL o) and
Fs£°)

we consider H = H”L

|¢ °)s are eigenkets of H, assoctated with the elgenvalues
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The usefulness of the relations (3.23) and (3.24) is that they

allow to obtain the Brillouin, Schrlldinger and Schbinberg-type expansions

by using convenient choice of the parameter A and the operator Hv;' In

fact, if we take A =0 and #. = H, ,wehaveh,:E(o),H' = H =V
z L p P

If we

and the formulae (3.23) and (3.24) give the Brillouin expansion.

_ - — (0 _ , _r (o) .
take A = 6B, = (EQ, E) and Hi = H,, one obtains h2 —ER . Hp
=H, - AF =V - AE_=V’, and we have the Schrlldinger-type perturbation

theory.

4. SCHONBERG PERTURBATION THEORY

. 0 0
If we consider A=0 and H?:Id;,f )5 - E5L|¢é ) >, we have, using

the Schbnberg's notation,
= roo =
H,2d, H =B, =1

and the reduced resolvent TA7Z will be

= Plog + P(e-)P| ™" P = K_

Ths
with
0= ]q)éo) > <¢i°) |5 pP=1- [¢£°)> <¢5L(0)|
I'hen, from (3.23) and (3.24), it follows that
v > = ngo (kD" [9,(0) | (4.1)
e, =r <ol T e, L w2
X n=0 < X
If one uses the relations (3.2) and (3.3) with Hi=J and HP= l,
one obtains
(4.3)

IT=H-J=Hy +V~-J ,

and from (4.1) and (4.2) one has



W, >=1 «D" !¢é°) > (b.4)
n=0
€, = Eéo) + <¢5§°) v Zo (Kaf)n }¢£(°)> (4.5)
n=

We note that we are here dealing with a Schinberg-type per-
turbation theory which contains a variable parameter E and a bracketing
function 6 = f(€) such that the interval (g,e,) contains a true eigen-
value E. The expansions obtained by Schidnberg are limited to the point

e, =E =E. They coincide with {(4.4) and (4.5) in the point €, =¢ =E,-

From (3.9) and (3.10) we note that in Schbnberg-type pertur-

bation theory the wave and reaction operators sre defined, respective-

ly, by

w=1+1T (4.6)
and

t=I+I7TI. (&.7)
According to (4.2), this means that in the point €, = E = E, we have

<0{) 2 [6")

. . . . . -1
to energy eigenvalues the relations involving the inverse operator ¢

> = 0. This result implies that in the evaluation of bounds

cannot Le used. In the SchrBdinger and Brillouin perturbation theories

(o) 1

0 -
<¢,é ){th)l > # 0 and the relations involving ¢ ° are then the starting

point for the treatment of lower and upper bounds for E,Q 8,

5. UPPER AND LOWER BOUNDS TO GROUND STATE ENERGY

EIGENVALUE

We will here use cperator inequalities as our main tool % e,
if A and B are two self-adjoint operators, we will write A B, if one

has the relation
<y laly> ><yl[Bly> (5.1)

for all |p> on the common domain of A and B.

If C is an arbitrary linear operator, the transformation [y>=
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= ~ |P'> leads to the new inequality

o+ . o \
cacsc B, (5.2)

A negative definite operator A satisfies hence the inequality A < 0 ,

and if the inverse exists, one has further A ' < 0, i.e.
4<0>4"1 <0 (5.3)

In the Sch¥nberg-type perturbation theory we have from (4.2)
and (3.16) that, for the ground state,

ey =5+ <o elel) > (5.4)
T o= Ke + T I K€ (5.5)
whare
[os]
t = § 1®«n" {5.6)
n=0

and the operator K€ has the spectral resolution

o

- (o)
ko= 5 (g ol <ol i (5.7)
1£0
We will assume that the variable E is such that
€ <E <E, <E, <... (5.8)

According to (5.7), the condition (5.8) implies that

Ke <0 (5.9)

that is, the operator Kg is negative definite.

For the operator T (see (3.15)) one may obtain the following

spectral resolution
= - F A 5!
T = kZI (e - &) [b> <pi (5.10)

where Ek and {@k> denote the eigen\/alues and eigenkets to g = PHP,

respectively.
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8,12

Using the result that the eigenvalues to B =PH P, Ek’

are such that

Ep oy € E < By k=1,2,
itfollowsfrom (5.10) that the operator I isnegativedefinite when
e < 2771. We will consider this case.

According to (5.5) the operator T may be expressed in the

form
-1
T=1(-K I) K,

Hence one has
[ GLE S (5.11)

From the relations (5.9) and (5.3) we have K;l < 0. This im~
plies, according to (5.11), that
77l < -1

>

or if we consider | positive definite
r> -1t (5.12)

For the operator T, one has consequently

0>7>-1"' , e< E <E
A still better bound for T is rendered if we consider the ex=
pansion
2n-1
1 n n
T = i.—z.o K, (IK )"+ (kD™ 1 (k)" , (5.13)

obtained from the relation (5.5). In fact, with T < 0 we obtain

(KEI)n 7 (IKe)n < 0, (5.14)



and from T > - I"'. it follows that
n % . n -1 n
(KeI) T (IK&:) > (Kz-:I) I (IKe) . (5.15)

tience one obtains from (5.13)

2n-1
T< ¥ K (1K) (5.16)
=0 €
and
2n-1
’ i - n -1 n
ro> § oK, (1K) K" 1t (K" . (5.17)
=0

The connection between the operator T and the reaction ope-
rator t is expressed in the definition (4.7). Substitution of the bounds
(5.16) and (5.17) into (4.7) gives

2n .

t< ) 1kin* (5.18)
=0 €

and

2n-1

t> ¥ 1kn®. (5.19)
=0 €
7

Substituting the estimates(5.18) and (5.19) into the rela-
tion (5.4), it follows that

2n . ’
€, <E, + < ¢£0)| ) I(KSI)'” | ¢0°) > (5.20)
£=0
and
2n-1 .
e > 8, + <ol Tz n® el (5.21)
7/=
Using (4.3) one has
(0) 2 -
e <E; + <¢§0)| 'ZO V(KEI)'L| ¢§°) > (5.22)
1:
and
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w

vk D?| o) > (5.23)

From the bracketing property of the functicn E = f(g) one

obtains finally

i} if a < Ey, then £, > E, and from (5.22) we have
2n .

By < Eo(o) + ) <¢§°) v (k.D" ]¢§°) n=1,2...
w0 (5.24)

ii) if e >E  , then g, < E0 and from (5.23) we have

2n-1 R
N ARED) <¢§°) v (KeI)1i¢0(°) , m=1,2. ..
=0

The partial sums of even {odd) orders in| form hence a set
of upper (lower) bounds to the true eigenvalue E in the Schdnberg-type

perturbation theory.

We conclude this section by noting that the case I < C does
not occur in the Schdnberg perturbation theory because cnhe nas

{2105 - ol 1at ol -y <0,

and this result is contrary to the variation principle®®.

7. CONCLUSIONS

The bracketing function in the partitioning technique has been
used in the evaluation of the lower and upper bnunds to ground state

energy eigenvalue in Schdnberg perturbation theory.

The expressions obtained from the partitioning technique for
the upper and lower bounds in Schrtidinger and Brillouin theories are
essentially confined to the case of a positive definite perturbation.
This fact could be a disadvantage of these theories if we wanttoobtain
numerical results. A simple physical example we can quote for a non-po-

sitive perturbation is the Stark-effect. In the Schbnberg's procedure,
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the perturbed Hamiltonian is written asH=J *+ 1 (J is such that
o) (0)

19, 7> = Epldg

I is necessarily positive definite. Our results are true for all T which

>) and the expansions are given in powers of | , where

can occur in the theory, and this includes the cases which can not be
studied by Schrddinger and Brillouin bounds. The only condition we have
to impose is e<E < E;. This implies that it is necessary to know a
rough lTower bound of the lowest eigenvalue E_Tl of the operator H= PHP.
In Schrddinger and Brillouin theories, for V>0, a such condition isnot
imposed because we can use the relations involving the inverse opera-
tor t_1 as starting point for the study of bounds. in the modified
percurbation theory proposed by Schdnberg the corresponding inverse ope-

rator t ' does not exist.

In order to study the relative utility of Schrddinger, Bril-
louin and Schdnherg bounds in determining the exact eigenvalue E, ap-
plications of our results to the atomic and molecular systems were ini-

tiated. W hope to report these results in a forthcoming paper.

We thank Professor K.S. Cho and Dr. MM. Souza for helpfui

discussions.
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