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Ve construct the exact solution of the Schrloldinger equation for
the systems and the boundary condition stated in the title of this pa-
per. The familiar cases of the ordinary harmonic oscillator and the
half oscillator are immediately identified. The connection with the dou-
ble oscillator is also established and is helpful to understand the e-
nergy spectrum of the latter. Similar connections can be used to study

other partial oscillators.

Constroi-se a solugédo exata da equagido de Schrgdinger para o0s
sistemas fisicos e condicdes de contorno mencionados no titulo deste
trabalho. Identificam-se imediatamente os casos familiares do oscilador
harménico comum e o meio oscilador. Também se estabelece a conexdo com
o oscilador duplo e espera-se entender o espectro de energia deste Ul-
timo. Podem ser usadas conexdes semelhantes para se estudar outros os-

ciladores parciais.
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cleares (México).

825



1. INTRODUCTION

In the most recent Latin American School of Physics, Wolf! dis-
cussed briefly the solution of the Schrgdinger equation for the harmo~
nic-oscillator potentiai with the boundary condition that the logarith-
mic derivative of the wave functions take a fixed value at the equili-
brium position. The problem admits an exact solution and that discussion
was in the context of noncompact group representations. We have studied
the problem independently and here we present our version of the solu-

tion.

The formuiation of the problem and the explicit construction of
the solution, in both analytical and numerical forms, is presented in
Section 2. In our discussion of Section 3, we identify immediately the
familiar cases of the ordinary’ harmonic oscillator and the half oscilla-
tor, we establish the connection with the double oscillator and show its
usefulness to understand the energy spectrum of the latter, and we il-
lustrate how similar connection can be used to study other partial os-

cillators.

2. THE PROBLEM AND ITS SOLUTION

The Schrb‘dinger equation for the harmonic oscillator of mass m,

frequency W and potential energy mW2X2/2, has the form

[-£+iJ 0@ = (v s Do) (1)
dz? L 2

in terms of the dimensionless coordinate 2 = V2mw/% z and the dimension-
less energy parameter Vv = (E/Aw) - —;— . We are interested in constructing
its wave functions such that i) they are quadradically integrable, for
the time being in the interval 0<z<%, which implies the boundary condi-
tion Y(z>>)} = 0, and ii) their logarithmic derivatives take a fixed va-

lue at the equilibrium position, say ¥'(0)/¢(0) =d.

The boundary condition i) is common to the ordinary harmonic

oscillator and the doubde osciIIatorZ, and we can make sure that itwill
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be satisfied if we separate explicitly the usual Gaussian exponential
factor in the wave function. Also, in common with these two cases, we
can consider the two independent solutions e-zz/t‘f and e-zz/“zg, whore
remaining factors satisfy the respective equations obtained upon subs-

titution in Eq. (1):

2
s%fu%-a%%wo (2a)
a2 3 d V-l
el GO gy e=0. (20)

dg?

Here £ = z2/2, and both Egs. (2a) and (2b) are immediately identified
to be of the confluent hypergeometric type®. Then the general solution

of Eq. (1) can be written as

.2 2 _ 2
viz) = 72 /N ]:AIFI(- %;l;;zz—) + leFl(]—z—\l;%;%)] . (3a)

Now we proceed to analize how the boundary conditions can be implemen-
ted. From the asymptotic behavior of Kummer's confluent hypergeometric
function F,{a;b;§>») » 1"(b)e5 52_b/11(a), we see that the bracket in
Eq. (3a) has the common factor e* /% which would dominate over the
Gaussian exponential factor. Thus, boundary condition i) can be satis-
fied only if the remaining factor in the bracket vanishes, and this

fixes the relative values of 4 and B leading to

b(z) = D, (2)

V/2 -zt /h 2 v o1 z°

vz e T (e )
T
22 F("T) i-v 3 2%
7 Ty g

This is a parabolic cylinder function and is quoted directly in Refe-

rences (1) (2) and (3). The derivatives of this solution can be obtai-
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ned, and making use of the properties of Kummers function ;F j{a;b;0)=1
and its derivative 1F1‘ {a;b38) = (a/b),F, {a+1; 5+1;8), we can express

the boundary condition ii) as

d= -2/ ()

This is a transcendental equation for the eigenvalues Vv, which will

take discrete values for a given logarithmic derivative. W carry out

its numerical solution by assigning arbitrary values to Vv and obtai-

ning the corresponding values of 4 . A sample of them is given in Ta-
3

ble I and in Figure |. W find it convenlent to use & or I/d in a com-

plementar~way, depending on the situation.

We close this section by pointing out that we have cons-
tructed the solution of Eq. (1) subject to the boundary conditions i)
and ii), obtaining the eigenvalues, Eq. (4}, and the eigenfunctions,
Eq. (3b). Concerning the latter, it is straightforward to show that
they also satisfy the orthegonality condition, as expected from Sturm-

-Liouville theory?.

3. DISCUSSION

From Table I and Fig. 1 we imnediately recognize the equally
spaced energy spectrum of the ordinary harmonic oscillator?, -e< 7 <o,
which corresponds to the integer values of v = 0,1,2,3,4,5,..., asso-
ciated alternately with vanishing values of ¢ and i/d. Of course, only
either of these two conditions can provide a smooth rnatching of our
results in the interval 0 6 2z < » to chose of the system under consi-
deration. In fact, they can be identified as the even and odd parity
states, which have a derivative of the wave function and a wave func-
tion, respectively, vanishing at z=0. Equation (4) is clearly satis-
fied in both cases, and Egq. (3b) shows that the wave function is re-
duced to only the first term and to only the second term, in the res~
pective cases. Additionaliy, the corresponding Kummer functions, ha~

ving a negative integer as their first parameter, become polynomials
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TABLE | - Eigenvalues and Logarithmic Derivatives at the Equilibrium

Position for Harmonic Oscillators.

VT & & oW W W W NN R NN —

<

~ W

d

681317
.550370
.399867
.221373
.000000
293549
.726784
.500498
.613807

oo

.087900
.926295
066312
k98090
.000000
.538173
.245915
.438310
621477

[>2]

. 946037
.728917
JL76432
.675979
.000G00
.706352
.612361
.115618
.100813

(o]

o o o —

o

1/d

467746
.816960
.500831
.517258
.406584
.375925
.666445
276717
.6060000
244624
.519131
.937811
.007676
.858137
802623
410120
177889
.000000
168179
366446
677308
479336
415723
.620209
.320963
. 140828
.000000
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——1/d = d —1/d X

Fig.l - Energy spectra for harmonic oscjllators whose wave functions

have a fixed ltogarithmic derivative at the equilibrium position.

and their identification with the Hermite polynomials is also immedia-

te.

The half oscillator®, defined by the harmonic oscillator po-
tential in the interval 0 < z <« and an infinitely high potential bar-
rier for 2<0, has the boundary condition of a vanishing wave function
at z=0, i.e. I/d = 0. In this case, Table | shows that the energy
spectrum is also equally spaced, but with a spacing double that of the
ordinary harmonic oscillator, because v is restricted now to only odd
integer values. Correspondingly the wave functions belong to the odd
parity set of the ordinary harmonic oscillator. In Fig. 1, these sta-

tes appear at either extreme end.

These two familiar cases, involving vanishing values of d and
1/d, are incidentally the only cases of equally spaced energy levels.
Tabie | and Fig. 1 show that for other values of d and I/d the energy
levels are indeed unequally spaced. However, apart from this, the cor-
responding states do have in common with the ordinary harmonic oscil-
lator states some other general properties. Among them we already men-

tioned that of orthogonality. By making reference to' Fig. 1, we can say
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thqt the lowest branch corresponds to the ground states for the diffe-
rent values of d ; they all have in common wave functions without any
zeros in the interval 0 €z <, The successive branches above corres-
pond to the first, second, third,... excited states; their respective
wave functions have one, two, three, ... zeros in the interval 0 €3 <,
Furthermore, for each branch we can distinguish the left (L, 4<0) and
the right (g, d>0) halves; their corresponding wave functions have a
number of maxima and minirna equal to their number of zeros andtotheir
number of zeros plus one, respectively. If we adopttheconvention that
the wave functions approach zero asyrnptotically from above, i.e. with
a positive value, then the number of maxima is equal to the number of
minima arid to the number of minima plus one, in the left right halves
of a brarich, respectively. This type of information about the wave
functions is summarized in Table Il, and illustrated in Fig. 2. For a
given branch, characterized by the number of zeros in the wave func-

tions, the larger the value of d the farther out are the positions of

) R (n) . (n) - (n)
the corresponding zeros, &> maxima, zMj , and rninima, B of the
respective wave functions, i.e. if 4, < d,, then
(n) (n)
z (d,) < EN (d,) (5a)
(n) (n)
zMj (dl) <z Mj (dz) (Sb)
(n) ()
g5 () < z.°(d,) (5¢)
where i = 1,2,...,7 ; 4 =1,2,...n; K =1,2,... distinguish the orde-

red points of each kind. On the other hand, for a given value of d ,
the zeros of the wave functions of the different eigenstates are rela-

ted to each other through

A o) ol s o
zé%) < zég) <,.. < zén?)l_] < zén;]) < el (6)

(n) (n+1)
For < Fogr S
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TABLE |} - Characteristics of Wave Functions for Harmonic Oscillators
in the Interval 0 £ 2 < » for different Eigenvalues and Logarithmic
Derivatives at the Equilibrium Position. The symbol [] indicates that
we take only the integer part of the number inside.

Numbers of Maxima

v d Number of Zeros and Minima
(-, D) (-, 0) 0 0=0+0
o) [0,) 0 l=teo
n,2 (-=,0) ‘- b=1+0
2,3) [2,) ! 2=l
3,4) [->,0) 2 2=t
B,S) [0’00) 2 3 =241
[5,6) [—00,0) 3 3=24+ |
(6.7) [0,%) 3 h=2+2

- -

n+l n
[212-1,2n) (->,0) " "= [L 2 J ¥ [7]

n+2 | [n+l
[2n,2741) [0,=) " o= H+[—2_—J

Similar inequalities hoid for their maxima and their minima. Thus, for

half branches on the left,

L)@y o 3) () (n) (n+1)
Bns S A S P2 S P S Pwl(nn) ) T Pu{ne2)/2] ¢ » (72)
2y _3) ) (5) nil 1) .
2ol < E S Bm < Fmp e {}/2] 7z+‘)/2] s (70)
while for half branches on the right,
L0 0) @)y o (B) {(n) 1+1) -
R R AN S Byl(ae2) /2] ¢ M[(n+3 y/2) < » (7e)
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Fig.z - wave functions for harmonic oscillaters with different logaritn-

mic derivatives at the equiiibrium position and energies.
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We will niake use of some of the above properties to discuss qualitati-

vely the less-than-half, the more-than~half and the double oscililators.

In analoyy with the half osciilator, the less-than-half os-
cillator is defined by the harmonic oscillator potential in the inter-
val ¢ < 2 < @ and an infinitely high potential barrier for z<ec. Conse-
cuently, its wave functions are also given by Eg. (3b), which satisfies
i), and must also satisfy the boundary condition ii} P(z=c) =0. The

latter implies that the zeros of Eq. (3b) must coincido with c,

{n)

o @ =c, (8a)

z
and they determine the eigenstates of the system. From Fig. 2, it s
clear that there is no solution for » = 0, i.e. v < 1. Actually, for
a given valtue of c, the ground state of the system  will have its

energy in the interval ! < v < 3, corresponding to
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s@ = s (8b)

or in the interval 3 <v< 5 corresponding to

2)

) d) =c; (8¢c)

(
0
or, in general, in the interval 2n-1 < v < 2n+l corresponding to

s = (89)

Similarly, the first excited state rnust have v>3, and its position
will be in the interval 3 < v<5, 5 <v<7,..., 2n-1 <V < 2n+] depen-
ding on the existence of the solution of

D@ =c, sP@ ¢, 2 @ -c. (8e)

In general, the R-th excited state must have V > 2%+1, and its posi~

tion will be in the interval 2n-1 < Vv < 2n+] where a solution of
)y
a2y o (d) = c (8f)
exists. The interlacing of the zeros, Inegs. (5a) and (6), combined

with Eq. (4), guarantee that the solution of Eq. (8f) is unique for a
fixed value of c. On the other hand, we could construct globally the
energy spectra of less-than-half oscillators with varying values of c,
by extracting the values of c = 23?)
Fig. 2 and making the necessary interpolating. The corresponding (c,

v(l))
= 29+1).

and vV from a source analogous to

curves are monotonical ly increasing lines starting from (e=0,v(®)

The more-than-half oscillator is defined by the harmonic os-
cillator potential in the interval - ¢ < 2<® and an infinitely high
potential barrier for 5z < -c. Again, its wave functions are also given
by Eq. (3b), satisfy i), and must also satisfy the boundary condition
ii) " Piz=—c) = 0. Let us recall that Eq. (3b) was constructed with the
interval 0 6 2 < « in mind, but it can be extrapolated to - ¢c < 3 < 0

without any difficulty. It must be pointed out that for d or I/d dif-
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ferent from zero, the wave function in Eq. (3b) is divergent approa-
ching +¢ and - for left and right half branches, respectively, as
z - -o; ttowever, this need not bother us for, finite values of ¢, where
the interval of extrapolation is also finite. 1n such an extrapola-
tion, the even and odd parity terms will dominate when d =0 and
1/d = 0, respectively; naturally, the extreme cases of exact equality
correspond to the situations dealt with in the first paragraph of this
section. The number of zeros of the wave functions in the interval
- g<z< 0 is equal ton for the left half branches and to n+l for the
right half branches. From our knowledge of the ground state wave func-
tions for the ordinary harmonic oscillator (d=0, v=0) and the half os-
cillator (d=-», v=1), we know that they cannot satisfy i , except
for ¢+, For a finite value of ¢, the ground state of the more-than
-half oscillator corresponds to some point in the right half of the
n=0 branch of Figs. 1 and 2 {(d>0, 0<v<1), where the wave functions ha-
ve the right value of d to be able to satisfy ii)" upon extrapolation;
the smaller the value of c the larger has to be the value of d and vi-
ceversa. Thus, starting from ¢=0, we have the half-oscillator with v=l;
as c increases, Vv decreases monotonically; and their asymptotic values
o and 0 correspond to the ordinary complete oscillator. The wave func-
tion of the first excited state of the more-than-half oscillator s
characterized by having one zero in the interval ~e<z<®; such a condi-
tion can be satisfied by wave functions associated with the branch of
Figs. 1 arid 2 in the intervals 1<v<3 and «>¢>0 giving again a monoto-
nic decrease of the energy from that of the half oscillator (e=0, v=3)
to that of the complete oscillator (c=®, v=1). Similarly, the wave
function of the second excited state is characterized by having two
zeros in the interval -e<z<e_  and Figs. 1 and 2 help us to recognize
that this can be accomplished within the intervals 2<v<5 and ®>¢ >0;
this gives the monotonic decrease of the energy from the half oscilla-
tor (e=0, v=5) to the complete oscillator (e==, v=2). The generaliza-
tion follows immediately: the global energy spectra for more-than-half
oscillators with different values of ¢ concist of monotonically decrea-
sing lines starting from the half oscillator (c=0, \J(R)=29v+l)and going
down to the complete oscillator {(e==, \)(z)=£). Such lines can be iden-
tified in Fig. 5.4 of Ref.2, where they appear as part of the spectra

of the double oscillator. Also, these energy lines are smoothly con-
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nected with those of the less-than-half oscillators. Actually all the-
se partial oscillators could be treated in a unified way by ailowing ¢

to be positive or neqgative in ii)"

The double oscillator is defined by the harmonic oscillator
petential centered at y =c , for 0<y < , and at y = -c, for -e<y<0.
The system is symmetric under the reflection operation ¥y * -y, and the-
refore its wave functions have a weil defined parity. The connection
between the double oscillator and our problem is established by shif-
ting the origin so that 3 = y-r and making the reflection with respect
to y=0. Then the boundary conditions for the odd and even parity sta-
tes are 1i)" Y{=0) = ¢(a=—c) = 0 and ii)" "' ¢'{y=0)=y' (z=-¢}=0, res-
pectively. W see that ii)" is the condition that we already investi-~
gated for the more-than-half oscillators, and consequently those re-
sults are identified as corresponding to the odd-parity states of the
double oscillator. The boundary condition ii)''' involves the maxima or
minima of cur problem in the extrapolated interval -« < z<0. The
rnumber of maxima and minima of the wave functions in the interval
~© < z < 0. The number of maxima and minima of the wave functions in

the interval z.. < 2 < 0, where z__ is the zero in the extreme left,

O 0F
is equal to n for both the left and the right halves of a branch; for

~o <z < a there are none at the Deginning of a half branch, and

Az
there are ;gditionaﬂy one maximum and one minimum at the end of each
half branch. Starting from the extreme end of a half branch these
points can be identified with the point at 2 = -~ and the maximum or
minimum at the extreme left of the corresponding wave functions for the
ordinary harmonic oscitlator; as we move down along the half branch,
such points will move towards each other, until they coalesce into an
inflection point Byp = Bap = Zrpg g and then they dissappear. This
information is useful to describe thé variation of the even parity
energy levels of the double oscillator as the value of ¢ changes. In
fact, for tne ground state and starting with ¢=0, we have the ordinary
harmonic oscillateor ground state (d=0, v=0); a5 ¢ increases we have to
move down along the lowest left half branch (d<0, v<0) in order to be
able to satisfy ii)"'. For small values of ¢ this can be satisfied if
tfzg gxtrapolated wave function has its maximum at the right position
ZN[:L/(d) = -0; thus, V decreases as ¢ increases from zero up to ¢ =

P .
= -z‘TO;') . From here on, as c increases more, we have to moveupalong
L
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the lowest half branch and ii)"' is satisfied at the minimum of the
(or)
mE

totically and from below to the ordinary harmonic oscillator ground

extrapolatedwavefunctionz (d) = -¢; as ¢>=, we come back asymp~
state. Similarly, the first excited even parity state of the double
oscillator starts from the corresponding state of the ordinary harmo-

nic oscillator (d=0, v=2) for e=0; its energy decreases monotonical ly,

as ¢ increases, covering the interval 2<v<l, where ’ég’)(d) = =-c and

the interval ]<\)<\)(QR), where Z(OR) (d) = -¢ up to 2(0R) = -e; and from
na ME IE (OR)

here on, the energy increases covering the interval v m <V o< 1,
o1 ;

where Z”(,FR) (d) = =-¢, approaching asymptotically and from below the

first excited energy level of the ordinary harmonic oscillator (1/d=0,
v=1) for e¢»©. In general, the global energy levels for the even parity
states of the double oscillator consist of lines which start from the
corresponding states of the ordinary harmonic oscillator {e=0, v=2);
decrease rnonotonically down to (c = “Erp s V= Vg < R ), where they
are minima; and then increase in the intervals (-zIE <e<®, vovu< 2)
approaching asymptotically and from below the v=% state of the ordina-

ry harmonic oscillator for ¢>®. The two lowest even parity energy le-

velsof thedoubleoscillatoralsoappear in Fig. 5.4 of Ref. 2. The
pairing of consecutive even and odd parity energy levels, which ap-
proach asymptotically the ordinary harmonic oscillator energy levels

from below end above, respectively, is also established. The discus-
sion in this section has been intentionally qualitative in order to
give an overall understanding of the energy spectra and wave functions
of the different oscillators considered, as well as the connections
among them. On the other hand, the quantitative formulation of Section
2, Eq. (3b), contains the elements to construct the numerical solutions

for specific situations.

One of theauthors (E.L.K.) makes useof this opportunity to
thank Professor K.B. Wolf, [IMAS, Universidad Nacional Auténoma de Mé-
xico, for discussions about the problen before and after each one cons-
tructed his own solution. The same author also wishes to thank Profes-
sor S. Fujita, SUNY at Buffalo, for calling his attention to the pos=

sible applicability of the results on the partial oscillators in the
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description of free electrons near the surface of a solid under a uni-

form magnetic field.®
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