Síntese do Nb₃ Ge pelo **Processo** de Coevaporação por Feixe de Elétrons

SERGIO CELASCHI* Applied Physics Department, Stanford University, Stanford, CA 94305

Recebido em 27 de Maio de 1981

The high T_c superconductor Nb₃Ge in an metastable A15 crystalline structure have been prepared with varying substrate temperatures using Eletron Beam Coevaporation onto sapphire substrates. Details on monitoring and controlling the evaporation are presented, as well as the flux exclusion method used to measure the superconducting transition temperature T_c . The metastable Ge-rich boundary of the A15 phase was found extended towards the stoichiometric ratio 3:1. The highest T_c onset (20°K) has been associated to the smallest A15 lattice parameter, and to the extended A15 boundary of 22 at % Ge.

A técnica de Coevaporação por Feixe de Eletrons (CFE) é utilizada para a síntese do supercondutor Nb₃Ge, em finos filmes de estrutura cristalina metaestável A-15. Detalhes dos processos de monitoração e controle da evaporação são descritos, bem como o método de exclusão de fluxo utilizado para a determinação do intervalo da transição. O contorno da fase metaestável A-15 foi estendido em direção à razão estequiométrica 3:1. O valor mais elevado da temperatura crítica da transição ($T_c = 20^{\circ}$ K) foi associado à composição que mais se aproximou da razão ideal.

1. INTRODUÇÃO

Os compostos intermetálicos ordenados A_3B de estrutura . A-15 possuem as mais elevadas temperaturas críticas (T_c) entre os supercondu-

Bolsista do 'Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, processo n? 200/424/79.

tores hoje conhecidos, retendo assim excelente potencial para aplicações de tecnologia de potência elétrica supercondutora^{1,2,3}. Diferentes processos tem sido utilizados para a produção desses compostos. particularmente para a síntese da classe metaestável são requeridos processos não convencionais'. Dentro desta destacamos o NbaGe, composto intermetálico de estrutura metaestavel A-15, possuidor de uma temperatura de transição $T_{z}=23^{\circ}K$, a mais elevada até então detectada⁵. Dados de difração de raio-X em amostras sintetizadas a partir do vapor de Nb-Ge condensado³ nas quais o valor máximo do intervalo de temperatura da transição cresceu de 6° K para 17°K, quando as mesmas foram submetidas a uma temperatura rápida retendo assim maior porcentagem de Ge, levaram § conjectura de que a razão estequiométrica ideal (3:1) poderia estar fortemente correlacionada com os altos valores de T_ procurados. Tal processo mostrou porém produzir desordens estruturais e alargamento da transição. Esforços no sentido de otimizar a temperatura da síntese e balanceamento esteguiométrico de pouco valor resultaram. Filmes de Nb-GP com valores de T mais elevados е reduzidas regiões de transição foram posteriormente produzidos por evaporação, porêm as amostras que atualmente retêm as mais elevadas temperaturas criticas (T_ 22°K) foram sintetizadas por Gavaler em finos filmes vaporizados⁵.

E ainda Incerto o quanto os contornos da fase metaestável A - 15 podem ser alargados na região de baixa temperatura, devido as dificuldades de se reproduzir filmes de mesma homogenidade, textura de grão e níveis de impureza. Nesse sentido, a técnica de Coevaporação por Feixe de Elerrons (CFE) tem mostrado excelentes resultados. As primeiras referências sobre a síntese de supercondutores A-15 a partir de processosdeevaporação são devidas a Edgecumbe⁶ e Neugebauer⁷. A técnica de CFE descrita neste artigo foi înicialmente desenvolvida por Hammond⁸ e posteriormente aprimorada em nossos laboratórios. A sintese dos filmes de Nb₃Ge a partir de ta1 técnica é descrita experimentalmente. O mais elevado valor de T_c obtido (20° K) foi associado com a razão de composição que mais de perto se aproximou da estequiomêtricamente correta.

Em condições de equilíbrio termodinâmico, a fase A-15 do sistema binário Nb-Ge ocorre no intervalc de composição de Ge entre 17 e 19% na região de baixa temperatura (600-850⁰C), portanto o composto Nb₃Ge não é encontrado em equilíbrio estável nesta região. Recentes experimentos têm mostrado que uma fase A-15 metaestavel pode ser obtida em concentrações de Ge superiores a 19%⁹. Nesse sentido, o processo de CFE é utilizado de modo a induzir a condensação dos vapores de Nb e Ge, com a composição desejada, sobre a superfície do substrato (safira) onde através de uma têmpera rápida a estrutura do substrato auxilia no crescimento da simetria desejada. Os limites laterais da zona A-1.5 obtidos por tal técnica se assemelham ao tsnlargamen-to induzido pelo uso de 0₂ durante a evaporação¹⁰. Uma vez que a fase metaestável A-1.5 compete com a fase estável Nb₅Ge₃ na região de concentrações superiores a 20% em Ge, a estrutura A-15 é extremamente sensível as condições de nucleação do substrato, taxas de co-deposição e temperatura do substrato T₂.

2. MATERIAIS E MÉTODOS

2a. Coevaporação por Feixe de Elétrons

A técnica de coevaporação é melhor discutida com o auxílio do diagrama de blocos da figura 1. Tal esquema mostra três fontes de evaporação, cada qual envolvendo um canhão de eletrons, um sistema de deflexão magnético, dois monitores da taxa de evaporação (um direto E um cruzado) e um sistema independente de refrigeração a água. O sistema de alto vácuo reduz a pressão interna até 10⁻⁹ Torr. Um analisador de gases residuais provê informações preci'sas sobre a composição atômica espectral da mistura gasosa durante todo o processo de coevaporação.

A potência da fonte é controlada por intermédio da corrente de emissão do filamento do respectivo monitor da taxa de evaporação, o qual mede o grau de ionização do vapor. A taxa de evaporação é dependente da densidade de potência incidida no metal e de sua potência total. Além do magneto de foco central (mayneto longitudinal), existe ainda um controle lateral de varredura do feixe, provendo assim maior homogeneidade da temperatura na superfície da fonte e adicional controle da taxa de evaporação.

O siibstratoéorientado na posição apropriada a receber a evaporação. Sua temperatura é controlada por um sistema de realimentação dirigida pelo sinal de referência do termo-par fixado na superfície do subs-

Figura 1 - Esquema do sistema de CFE. Apenas um dos canhões de elétrons é mostrado. Com a utilização simultânea das três fontes torna-se possível a síntese de compostos e ligas ternárias.

trato (monocristal de safira). O diagrama de fase do composto formado é função da temperatura do substrato, sua taxa de variação, porcentagem dos elementos evaporados, pressão de vapor de certos gases utilizados, vácuo e taxa de evaporação dos elementos.

A evaporação pelo feixe de eletrons resulta em taxas com elevadas amplitudes de flutuação, talvez em torno de 50%, com componentes em frequência de dezenas de Hz. Tais flutuações são causadas pelos intensos gradientes térmicos produzidos nas fontes de evaporação. Para controlar tais flutuações, um complexo sistema de realimentação foi desenvolvido. Os monitores da taxa de evaporação (MTE) construídos para eliminar as variações indesejáveis, utilizam o processo de corrente de ionização, COM caracteristicas próprias para permitir seu uso em tais experimentos¹¹. O sensor de medida possui um filamento (SCR) e um coletor. Para garantir sensibilidade somente ao fluxo evaporado e não ao resíduo gasoso, ιm "chopper" mecânico é utilizado. A fase do fluxo no interior da câmara de

ionização é comparada com a do "chopper" através de um analisador de fases ("Lock-in"). A amplitude é correlacionada com o nível de evaporação desejado, o qual é ajustado proporcionalmente à taxa constante previamente estabelecida. A diferença de sinais é então enviada para monitorar a fonte de potência do respectivo feixe de eletrons. Flutuações de alta e baixa frequência (50 Hz e l Hz) utilizam diferentes circuitos eletrônicos de realimentação. Tal conjunto permite manter uma taxa estabilizada em torno de 2% em amplitude.

Os controles independentes de composição e temperatura do substrato são importantes características da CFE, eles permitem uma mistura homogênea dos elemento; sobre o substrato cuja temperatura deve ser eleveda somente o suficiente para permitir o ordenamento atômico, ou possibilitar difusões apenas da ordem do espaçamento interatômico. Tal independência de controles conduz ao dominio das dimensões granulares nos monocristais formados e controle da espessura do filme gerado. Devido à utilização de fontes independentes de evaporação para cada elemento, obtém -se excelente controle sobre a composição desejada. Informações adicionais sobre a distribuição angular da taxa de evaporação são geradas pelos ERM cruzados (figura 1).

2b. Método Indutivo para Determinação de T

Tal método é baseado no Efeito de Meissner¹² e encontra-se esquematizado pelo diagrama de blocos na figura 2. As amostras sintetisadas são colocadas em compartimento isotérmico contendo o aquecedor e o termo -par de referência do banho térmico. O abaixamento da temperatura é obtido pela passagem de hélio liquido através da base da amostra. Sua temperatura é controlada linearmente no tempo através de um circuito de realimentação. A saída amplificada do termo-par dirige o eixo horizontal do registrador é o sistema de realimentação. A suscetibilidade das amostras é medida pelo método padrão de ressonância¹³, com auxílio de um circuito o qual extrai o deslocamento da frequência de ressonância causado pela exclusão do fluxo magnético na transição supercondutora.

Figura 2 - Diagrama de blocos do sistema para medida indutiva de T_c. Ao sofrer a transição a amostra expulsa as linhas de indução magnética de seu interior, o que causa o deslocamento da frequência de resonância do circuito.

2c. Compostos 8-15

A estrutura dos compostos intermetálicos A₃B com simetria A-15 ou bet-tungstênio possui características peculiares. Os sítios A (figura 3) estão geometricamente situados de moda a formarem três cadeias ortogonais não interessantes. As distâncias entre primeiros vizinhos ao longo das cadeias são 10% inferiores as calculadas a partir do raio metálico elementar do átomo A, o qual no composto aqui analisado é o Nb. Todos os materiais de estrutura A-15 apresentando altas temperaturas críticas possuem elementos de não transição nos sítios B, embora compostos A-15 também possam ser crescidos com elementos de transição em tais sítios. Geller¹⁴ obteve uma série de distâncias interatômicas para tais estruturas baseado na premissa de que as distâncias A-B determinam as dimensões da célula unitária, e assim os parâmetros da rede cristalina de todos os compostos podem ser especificados assumindo-se valores arbitrários mas auto--consistentes para os átomos A e B (raios de Geller). Tais raios reproduzem dentro de 3% os valores experimentais aqui encontrados. Tal análise

Figura 3 - Estrutura atômica dos compostos A-15. Os átomos B localizados nos centros de cada célula unitária não são visíveis.

ainda tem se mostrado útil na identificação de novas fases A-15 e em estudos estequiométricos.

2d. Experimental

Uma pressão de 5×10^{-6} Torr foi mantida no sistema durante o processo de coevaporação. Dados quantitativos sobre os diferentes gases presentes durante o processo de CFE foram obtidos utilizando-se um Anali-sador Residual de Gases (UTI model 100C). H₂, CH₄ e CO foram as maiores contribuições detectadas.

Amostras de No e Ge com graus de pureza de 99.9 e 99.99% respectivamente foram fundidas pelos respectivos feixes de eletrons e **depo**sitadas sobre as superfícies **altamente** polidas de monocristais de safira de dimensões **0.64×0.64×0.064** cm³ (Union Carbide). A geometria do suporte **montado** no interior do forno controlado termicamente (**flutuações** inferiores a 10[°]C) permite um arranjo de 30 amostras dispostas em colunas (03) de 10 unidades **a**linhadas perpendicularmente **ā linha** de união das fontes de evaporação (coevaporação em fase). Tal arranjo resulta em variações de 1.0 e 1.5% de Ge por unidade da mesma coluna. As taxas de deposição foram variadas de 70 a 130 Å/seg. Os circuitos de realimentação garantem que as taxas de evaporação de cada elemento permaneçam dentro de 5% de flutuação.

Un difratômetro de raio-X Norelco utilizando radiação K_{α} do Cu e calibrado com amostra padrão de Si foi usado para determinar as estruturas cristalinas e constantes da rede. A composição dos filmes foi obtido por Análise de Microprova Eletrônica (AME) com precisão de 1%. Quanto aos valores de temperatura crítica, a precisão foi de 0.2° K. -Tais dados permitiram a construção do diagrama de fases apresentado na figura 4, bem como obter as dependências do parâmetro da rede A-15 e T_c em função da concentração de Ge (figuras 5 e 6).

Figura 4 - Parte da região de baixa temperatura do diagrama de fase do Nb-Ge. As linhas pontilhadas representam os contornos das regiões de equilíbrio como obtidas por Muller. As linhas continuas indicam uma tentativa de limitar a região metaestável A-15. Os círculos abertos estão associados à região metaestável A-15, enquanto que os parcialmente fechados indicam combinações de fases.

S. DISCUSSÃO DOS RESULTADOS

Uma fração do diagrama de equil**ibrio** de fases do sistema Nb-Ge, o qual compreende a **região** A.15, encontra-se esquematizada na figura 4. A região de homogeneidade da fase A-15 está limitada à estreita faixa entre 18.5 e 19.8% em composição de Ge, para temperaturas inferiores a 1.600 $^{\circ}$ C. Neste intervalo T_ cresce de 4.8 até 5.9° K permanecendo então constante em concentrações mais elevadas. No mesmo; intervalo, o parâmetro da rede é reduzido de 5.18 para 5.17 🎗. Em concentrações de Ge superiores a 20% a fase A-15 é encontrada em equilibrio com a fase Nb₅Ge₃ (de estrutura hexagonal). Do lado da região rica em No nota-se a coexistência das fases A-15 e A-2 (simetria cubica de corpo centrado). Devido à alta estabilidade do composto Nb_5Ge_3 , a fase pura A-15 não pode ser estendida para concentrações de 25% em Ge, portanto a composição estequiométrica de tal composto não é encontrada em condições de equilíbrio termodinâmico. Tal razão pode a principio ser alcançada através do processo de CFE. Investigações no sentido de preparar compostos super-condutores com elevados valores de T_c e estrutura balanceada têm sido feitas atravês de coevaporação epitaxial10.

Figura 5 - Parâmetro da rede A-I5 versus composição de Ge para filmes de 3000 \$ depositados a $\$80^{\circ}$ C com taxa de 90 \$/seg. Os parâmetios de rede são sensivelmente inferiores àqueles obtidos em condições de equilíbrio termodinâmico (a, = 5.167 \$). A extrapolação para o valor ideal de 25% conduz ao resultado $a_0 = 5.115 \quad 0.005 \ \$$ o qual é 0.3% inferior ao previsto pelo modelo de Geller (5.13 \$).

Diferentes resultados em estrutura e T_c em função da percentagem de Ge foram obtidos variando-se a temperatura do substrato entre 650 e 1100°C. O processo de coevaporação seguido pela deposição da mistura gasosa sobre as superficies do substrato e posterior resfriamento (5°C/ /seg) resultou na obtenção de uma fase metaestável A-15 estendida entre os extremos de 15 e 22% em Ge, o que equivale a uma ampliação de quase quatro vezes na estreita faixa de equilibrio investigada por Muiller¹⁵.

Os mais elevados valores de T_c foram alcançados estabilizando--se T_s em torno de 880°C e a taxa de deposição (r) em 90 Å/seg (figura 6). O mais elevado valor para o limite superior da região critica (T_c = 20°C) está associado à composição que mais se aproximou da razão estequiométrica (88%). Embora a têmpera utilizada seja um fatoi- determinante para a síntese da estrutura metaestável, desordens atômicas resultam de tal procedimento, ou seja, troca de posição entre os átomos de Ge e Nb. Tais defeitos estruturais somados à não homogeneidade observada nos filmes conduzem ao alargamento da transição estudada. Mesmo em face de tais dificuldades, os limites superiores dos intervalos de transição são muito superiores àqueles alcançados em condições de equilíbrio termodinâmico (T_c da ordem de 6°C), evidenciando uma forte correlação entre a estequiometria

As constantes da rede cristalina das diversas amostras, calculadas dos espectros de difração de raio-X estão apresentadas em função da concentração de Ge na figura 5. As amostras de estrutura metaestável até 22% têm seus parâmetros de rede inferiores aos respectivos valores de equilíbrio termodinâmico na mesma temperatura. Os dados apresentados na figura 5 quando extrapolados para a concentração de 25% permitem prever o parâmetro da rede cristalina A-15 pura. Tal extrapolação resulta no valor de (5.115 + 0.005) Å em excelente concordãncia com o valor previsto por Jonhson¹⁶ em seu trabalho de revisão do Modelo de Geller. As razões básicas de tal compressão não são ainda completamente entendidas. Não parece ser possível associar tal comportamento à expansão térmica diferencial entre o filme e o substrato¹⁰. Outros fatores poderiam afetar a constante da rede. Em uma amostra rica em No espera-se que parte do excesso de átomos de N6 irão ocupar os sítios de Ge e assim "impurezas de Ge" ficarão incorporadas aos filmes durante a deposição. Tais substituições podem reduzir a constante da rede do filme e ao mesmo tempo aumentar T_c como in-

606

Figura 6 [•] Intervalos de temperatura da transição medidos indutivamente em função da concentração de Ge. 0 valor mais elevado de T_c corresponde à composição mais próxima da estequiométrica.

dicam os resultados da figura 6. A princípio poderia se esperar uma contínua redução de a_0 para concentrações superiores a 22% a qual levaria à um possivel aumento de T_c . Tal prolongamento não tem sido encontrado quando esse composto é sintetizado nos moldes descritos. A razão de tal limitação, termodinamicamente falando, está na restrição do contorno da região A-15 estendida em direção aos 25%. Na região de coexistência das fases A-15 e Nb₅Ge₃ a constante da rede supercondutora é forçada a se ajustar conforme a simetria tetragonal mais estável do Nb₅Ge₃ (a = b = 10.163; c = 5.13 Å) de modo a minimizar a energia livre do sólido depositado ãquela temperatura.

Outras idéias têm sido recentemente utilizadas visando a extensão dos contornos da zona A-15 em direção à razão estequiométrica no intuito de unia redução ainda maior de a_0 . Dentre outras destacamos; o crescimento epitaxial, a utilização de pressões parciais de 0_2 durante o processo de CFE e finalmente o processo de têmpera à base de raio laser. O crescimento epitaxial do Nb_xGe sobre o Nb_xRh¹⁰, visando a deposição do primeiro' sobre uma superficie de estrutura mais compatível à formação 'da fase desejada, tem mostrado estender o contorno de tal zona até 25%, levando a uma elevação de 6% em T_c $(21.2^{\circ}K)$. O uso de 0_2 como elemento estabilizante da fase metaestável também amplia a mesma região em direção à razão ideal, embora variações sensíveis de T_c no Nb₃Ge não tenham ainda sido observadas⁹. Finalmente a têmpera à base de laser¹⁷ (10^6 ^oC/seg) oferece a possibilidade de estabilizar a fase de alta temperatura em temperatura ambiente sem decompô-la. Dados obtidos para o composto Nb-Al indicam significativos aumentos de T_c. Tal conjunto de resultados ofereceum acesso bastante promissor à síntese de novos compostos A-15 balanceados e assim promissores parâmetros críticos da transição supercondutora para aplicações tecnológicas.

Agradeço ao Dr. T.H. Geballe a oportunidade de participação em tão ativo grupo e a **R.Feldman** pelas valorosas **discussões** e explanações. Esse trabalho é parte do programa de doutoramento que vem sendo realizado pelo autor no Applied Physics Department-Stanford **Universi**ty sob suporte financeiro do **CNPq.**

REFERÊNCIAS

1. Geballe, T.H. and Beasley, Mc, Superconducting Materials for Energy Related Applications, Acad. Press. Inc., chap. 10, 491 (1979).

2. Geballe, T.H. and Hulm, J.K., Scient. Am. 243 (5), 138 (1980).

3. Mathias, B.T., Geballe, T.H., Williens, R.H., Corenzwit, E. and Hull, G. W.Jr., Phys. Rev. 139, A 1501 (1965).

4. Hammond, R. H. and Hazra, S., in *Proceedings of 13th International Conference on Low Temperature Physics*, Boulder, Colorado, 1972 ed. by K. D. Timmerhaus, Plenum Press, N.Y., 1974 Vol. 3 p. 465.

5. Gavaler, J.R., App. Phys. Lett, 23, 480 (1973).

6. Edgecumbe, J., Rosner, L.G. and Anderson, D.E., J.Appl. Phys. 35, 2198 (1964).

7. Neugebauer, C.R., J. Appl. Phys., 35, 3599 (1964).

8. Hammond, R.H., IEEE Transactions on Mag., Vol.MAG-11 N^O2, 201 (1975).

9. Hallak, A.B., Hammond, R.H., Geballe, T.H. and Zubeck, R.B., *IEEE Trans.* Mag., Vol. MAG-13 N^O], 311 (1977).

10. Dayem, A.H., Geballe, T.H., Zubeck, R.B. and Hallak, A.B., J. Phys. Chem. Sol., 39, 529 (1978).

11. Hammond, R.H., Meyer C.H., Gehman, B.L. and Kelly, G.M., U.S. Patent $N^{0}3.419.718$ (1968).

12. Ashcroft, N.W. and Mermin, N.D., *Solid State Physics*, Saunders Col. Philadelphia (1976).

13. Schawlow and Devlin, R., Phys. Rev., 113 (1959).

14. Geller, S. Acta Cryst. 9, 885 (1956).

15. Muller, A., Z. Naturforsch, 25A, 1659 (1970), ou sua tradução _{por} R. Gregg Masfield, Office of Language Services - Information Div., Oak Ridge National Laboratory, June (1971).

16. Johnson, G.R. and Douglass, D.H., J.Low Temp. Phys., 14(5/6), 565 (1974).

17. Shibata, T., Gibbons, J.F., Kwo, J., Feldman, R.D. and Geballe, T.H. Submetido para publicação no J. Appl. Phys.