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W study with a simple model how deuteron-, triton- and o-
~clusters behave concerning their cluster structure identities during
the scattering process and just after reaching nuclear matter of fini-

te size.

Se estuda, através de um modelo simples, como aglomerados
deuteron-, triton e alfa comportam-se, com respeito as suas estruturas
de aglomerados durante o processo de espalhamento e logo apos atingi-

rem um matéria nuclear finita.

1. INTRODUCTION

It is interesting and instructive to consider what will ari-
se with a nuclear cluster when it is put in infinite nuclear matter
with a certain density. ‘The presence of nuclear matter will affect the
cluster through the Pauli exclusion effect and the potential field ac~
ting on it. This problem was first investigated by one of us (H B.)
and A. Kuriyama for deuteron cluster in connection with the transition

between the deuteron-like super state and the deuteron-like boson gas

+ This work was supported in part by FINEP and CNPq {Brazilian Agen-
cies)
++ Permanent address: Division of Mathematical Physics, Fukui Univer-

versity, Fukui, Japan 910.
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state' . This deutercn cluster problem has been subsequently studied in

more detail?.

In this paper we extend our consideration to triton and al-
pha in nuclear matter. In the sense of local density approximation,
this study could teli us hcw clustering can grow on a nuclear surface
of finite nuclei and also how a cluster can keep Its identity during

the course of scattering process.

2. MODEL AND EQUATIONS

i} Deuteron

A deuteron in nuclear matter is described essentially by the
Bethe-Goldstone equati‘onl’z. W use a simplie Yamaguchi form?, separa-

ble in momentum space, as an s-state nucleon-nucleon interaction

k|v|k™> = - ¢ glk) gk') ,
(2.1)

gik) = 1/(k? + u?)

Calculations have been done®"" by using more realistic interactions in=
cluding repulsive core and strong tensor component. Although thestrong
tensor component gives rise to an interesting polarization effect on
deuteron?, in average it gives a quite similar result to that obtained
frorn the simple interaction like Eq. (2.1). The simple force, Eq.{2.1) ,

will be used in the following discussion. With the interaction (2.1,

the BG-equation for deuteron with energy E is reduced to the disper-
sion equation
"gk)? g (kKK )
12 Fx2 a = —-‘é (2.2)
k2

0 E -

M

where the effective mass M* takes care of the effect of the potential
field generated by nuclear matter and §;2 is the angle-averaged Pauli

operator defined by
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N, 5 -k 5%,

2
G2k, Ksk,) = ¢ 0, kK2+5ER,,  (23)

2 4 K2 2 .
(O kF)/ , otherwise ,

where k, X and kF are respectively the relative momentum, the center=-
of-mass momentum and the Fermi momentum of nuclear matter. The Fermi
momentum kF is related to the density p by p = 3—12r7k;’ . The binding
energy E of the deuteron cluster is solved as a function of k_,, ¥ and

M*/M.

F,

if) Tritonand Alpha

Now for triton and alpha in nuclear matter, it is not inten~
ded to solve the problem exactly, since the present calculation is ra-
ther directed at getting a physical picture. W set up a trial wave

function in momentum space

A
- I 2 2 » o
¥p= @ |_exP {' & kzz} exp { a7 & - Xg)z}] ' (2.4)

(A=3fort and A = 4' for a)

where the Paul i-projection operator § is given by

A
G= 1 &k kg, | (2.5)
=1 .
~ (R >k
3 F ]
7 k. k) = X (2.6)
17 F 0, . <k
7 F

In Eq. (2.4), the first expanential represents the internal wave func-
tion of cluster with E I?iE-i/A, K = 27-;7: and the second exponential re-
presents the center-of-mass wave function of the cluster which is mo-
ving with momentum E an average. The size parameter of cluster b is

treated as a variational parameter.

The internal energy of cluster in nuclear matter will be gi-

ven by the expectation value of the Hamiltonian
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A A
H=} T, -T + ) V.. (2.7)
=1t isg=1 *7

with respect to ‘i’A of €q.(2.4). Some algebra lead to

E, (b, kp, Kg, M*/M) "
2 t 72 gy v
- A (A-l){ A - [;A—J }+ i%—'—) - (2.8)
2M* A A ny
where
- J exp [-b2 (k24K [A2)} J4(2b%K k/A)KPdK (2.9)
A = % g g
F
_ -p2 (k24K /42)} T (2b2K k/A)K dk 2.10
t, jf exp (-5 (24K 14%)) 3 (26°K R/4) (2.10)
kr
tﬁ“ - j exp (-b2(k%+k%/4%)} J,(2b%K k/A)K dK , (2.11)
% g g
7
= B ~b2 (k2+hk? /A2)/ 2}J  (2b%K X /A) K>
v, = G, [0 aK expl-b® (KH2 A2 2)], (20K K )
o 2
x [joexp{—bzkz}gA(k)le(k,K;kf)kzdk] , (2.12)
nj” = J dKexp{-bz(Kz.#iK;ﬂlz)/Z}jo(szKgK/A)KZ
[}
x J expl- B2K21Q, , (k, Kk )KPdk (2.13)

0

with JO(Z) and J’l(Z) being spherical Bessel functions with imaginary
argument. In Egs. (2.12) and (2.13) we have used the angle-average ap-
proximation for the Pauli operator. The mass number A is put on the
interaction, Gy and gA(k), because the interaction parameters g and u
of Eg. (2.1) need be adjusted to reproduce the energy and radius of
free triton (4=3) and alpha (4=b).-1t is known that the effective inte-

raction, say G-matrix, changes quite strongly depending on massnumber
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in very light nuclei, because of the shielding effect of the strong
tensor force®. Thus the choice of different interaction parameters in
difference nuclei is natural in such a simple effective interaction as
Eqg. (2.1).

3. RESULTS AND DISCUSSION

Calculated binding energies of the dewteron-, triton- and
alpha-clusters in nuclear matter are shown respectively in Figs. 1, 2
and 3 with respect to the Fermi momentum of nuclear matter kF’ A value
of K , center-of-mass momentum carried by the cluster, is attached to
each curve. The nucleon effective mass M* has been put equal to M

throughout.

Every curve starts at kF:O with the binding energy of a free
d, t or a. With increasing kF the binding of a cluster becomes weaker
and at a critical value k;:, the cluster ceases to be bound. The criti-
cal kF value for a'cluster ‘'at rest" (Kg=O) is seen to be 0.25, 0.40
and 0.55 fm=! for d, ¢ and a, respectively. The Pauli exclusion prin-
ciplte which nuclear matter imposes on the clusters is responsible for
all the above behaviors. More explicitly stated, momentum components
occupied by nucleons in nuclear matter cannot be available for a clus-
ter to construct its bound wave function, as is explicit in the equa-
tions giveh in 2. W thus naturally understand that as the nuclear mat-
ter density increases, the longest-surviving cluster is the a-cluster,
and then t and d. The a-cluster is most compactly bound in configura-
tion space and therefore most extended in momentum space, thus being
least subject to the momentum cutoff due to the Pauli principle. It is
noted that if we take a more appropriate tail behavior for t and o-
cluster wave functions, the critical kaaIues will becomes somewhat
larger than those obtained here by using the simple Gaussian form. In
this sense the result for the d-cluster is most reliable.

The above results for X =0 can be interpreted in the local.
density approximation. A cluster with bound state structure can appear

on the nuclear surface only in the region with density lower than a
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critical value.. The critical density o -I's estimated Bypc=(k§;/kéz)3plv
with ky, and ¥ being the normal Fermi momentum and density ( o = 1.4

fm™). We have thus

/170 »~ d
pc/DN ~&$ 1/43 + ¢ (3.1)
1/16 + o

With a Fermi-type density distribution in mind, e, given in Eq. (3.1),
corresponds to a nucleus of a quite sharp edge. Even in such a low den-
sity the Pauli principie can inhibit a subgroup of nucleons from cons-

tituting a bound state cluster.

The situation changes, if the clusters run through nuclear
matter with a non-zero momentum K . With increasing X_the clusterscan
remain as bound states more easily and the critical F%rmi momentum kep
increases, as is evident in Figs.1-3. The value of kcF reaches the nor-
mal value kNF= 14 fm~* at X =~ 40, 45 and 50 fm ! for d-, t- and
a-clusters, respectively. Recall that K is the center-of-mass momen-
tum of a cluster, hence its share per nucleon is X /A with 4=2, 3 or
4. W thus see that the d-, t- and a-cluster can ?emain internally
bound even enough inside a nucleus, if they run with the momentum per
nucleon of 2.9, 1.5 and 1.25 fm~? respectively. For a cluster running

Ke (fm=)
Q4 Qa8 12
T

Kg=0.0 Kg=1.0 Kg=2.0 Kg=3.0

Kg=4.0

EMNERGY {MeV)
]
o
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N
o

Fig. 1 - The binding energy Eof the deutercn cluster versus the Ferni
momentum of nuclear matter k for different values of the center-of-

-mass momentum X (fm}.
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Fig.2 - The binding energy E of the triton cluster versus kF.

relative to nuclear matter, the Pauli principle can only cut off an

unimportant part of the momentum component needed to construct the in-

ternally bound structure.

Let us now consider a cluster scattered by a nucleus. In
this case the cluster feels the potential field generated by the nu-
cleus and gains a certain amount of kinetic energy in addition to its
incident energy Eq. In the sense of the local density approximation,
when the cluster passes through a portion of the nucleus with density
p, each nucleon constituting the cluster gains a kinetic energy of
(ﬁsz/ZM + &), where kFcorresponds to p and h is the separation ener-
gy of the least bound nucleon, ~8 MeV. Thus the effective center- of -

-mass momentum K_ of the cluster reads

h2k?,
. /241
Kg—/ﬁz. {E'°+A[ Zbﬂ + A} . (3.2)

For the very low incident energy (E4=0), Eq. 0.2) leads to ngAkF by
neglecting A. Regarding Figs. 1-3 as defining the binding energy E as
a functions of kFand Kg, we can trace the cluster passing though a nu-
cleus by following the points given by E(kF’ Kg:AkF). W find that an
a-particle with zero incident energy maintains its boundness all the
way through the nucleus, ie. E (kF, K llkF) is always negative for

k < k For d and t, E 'Zkr) and E (kF, Kg BkF) vanish at
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Fig.3 - The binding energy E of the alpha cluster versus kF

kF~0.4 and 0.8 fm~!, respectively. In order for a deuteron and a tri-
ton to be able to pass the highest density part of the nucleus without
losing their boundness, their incident energy Z, must be high enough
to satisfy
N N

By (g K (F, K7) < 0 (3.3)
with K;(EO,RF) being just Eq.(3.2). W find such E values to be ~ 80
MeV for d and ~ 20 MeV for ¢.

Finally in Figs. 4 and 5 the binding energies of the t- and
a-clusters are drawn with respect to the variational parameter b spe-
cifying the harmonic oscillator size. (See Eq.(2.4)). Energy minima
shift to larger b side with increasing kF' This feature is consistent
with weaker binding energies and hence less compact wave functions. No-
te however that this b does not literally characterize the extention
of the wave function, but ‘YA of Eq.(2.4) should actually be much more

extended because of the Pauli operator .

The deuteron-, triton- and alpha-clusters in nuclear matter

have been studied with a rather simple and crude model. W are aware
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Fig.4 = The binding energy E of the triton cluster versus the size pa-
rameter of cluster E, for center-of-mass momentum of triton cluster
Kg equal to 6fm™! (a) and 3fm~! (b).
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Fig.5 - The binding energy E of the alpha cluster versus b. (a) Kg-Gfm_'
and {b) K =3fm~I.
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that this simple minded approach soniehow did not take into account pro-
perly various importanf effects which play an important role in this
are of physics. For instsnce, the separable nucleon-nucleon interaction
(eq.2.1) wused in this work is not so realistic since interactions in-
cluding repulsive core somehow affect the results. By also making the
approximation M*=M, we did not take into considerations carefully the
effect of the average potential field generated by the nuclear matter.
However it is still a difficult task to treat simultaneously all these
effects. Our idea was basically to treat the problem in a more intro-
ductory way, hoping that something instructive could be achieved. Even
with our approximations the results obtained are not sc far fran rea-

lity.
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