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The diffusion equation for particies in a Riemannian space sub-
ject to a single constraint is discussed, as well as the implications of

the holonomy and non-holonomy of this single constraint.

Discute-se a equagdo de difusdo para particulas en un espago de
Riemann, sujeitas a un anico vinculo, bem como as consequéncias da holono-

mia e anolonornia deste vinculo.

1 INTRODUCTION

In a previous paper! we have argued that the classical equafions
of motion for a particle subject to a non-holonomic constraint cannot be
equivalent to equations derived by the vanishing of the first variation of
an action functional. This result immediately raises a few questions that

we will try to answer and clarify in this paper.

Hertz? was one of the first to question the variational princi-
ple of classical mechanics based on the non-holonomy of constraints. The
original enunciation of Hamilton's principle refers specifically to holo-
nomic systems. When one considers non-holonomic constraints the variatio-
nal principle can be generalized by treating the constraints as subsidia-
ry conditions to the first variation of the action integral. The issue
usually raised around this point is whether the varied paths are among geo-
metrically possible paths or not. A recent exposition on this old probliem

is given by P. Sussekind Rocha® in this essay on D'Alembert's principle. A
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better known discussion is that given by Pars* in answer to a similar ques-

tion posed by Capon®.

The lack of a Hamiltonian formalism for non-holonomic systems
makes the quantization of such systems a very difficult task and stan-
dard procedures do not apply. Therefore, we have turned our attention to
the analog problem of deriving the diffusion equation for such systems.
Even nere the problem escapes standard procedures for deriving the dif-

fusion equation as in general Liouville's measure is not invariant.

In this paper we discuss the diffusion equation for particles
in a Riemannian space subject to a single constraint. W further discuss
the implications of the holonomy and non-holonomy of this single cons-

traint.

'n section two we discuss holonomy in the ligth of gauge theo-
ry and in section three we derive in a detailed way the diffusion equa-
tion for such systems. Section four does the same for the case of non-
-integrability of the constraint and section five studies the limit of
the two equations derived when the non-integrable constraint converges to
an integrable one. Section six exhibits an example obtained by simula-

tion and in section seven we draw the conclusions of this paper.

2. MAMILTONIAN FORMALISM FOR PARTICLES SUBJECT
TO HOLONGMIC CONSTRAINTS

The purpose of this section is to derive the Hamiltonian for

a particle constrained to move on the surface

-+ 3 3 .
4@) =0, 224 (2.1)
9q  9q
imbedded in a Euclidean n-dimensional space. This is accornplished by Di-

rac's formalism for singular Lagrangeans.
The Lagrangean for the system may be written as

L=%£f£f”+a¢, (2.2)
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where a is a Lagrangean multiplier and must be considered a new dynami-

cal variable, addiny to the configuration a new dimension.

Sincs a is absent from the Lagrangean, the momentum B, canc-

nically conjugate to a, must vanish identically, i.e.,

L (2.3)
90

B8

which defines a primary constraint.

W may now construct Dirac Hamiltonian, writing

. p. = o - up (2.4)

where # is an undetermined function of p,q and a.

Consistency with the constraint imposes that the arbitrary
function ¥ in H must be such that all time derivatives of B8 vanish.

This requirement generates a new set of constraints and therefore we ha-

ve:
¥t =8 -0 (2.5)
X2 =8 ={B,H} =0¢ =0 (2.6)
BzE=2p o0 (2.7)
3q”
e - 2
=g =a 8(2) 9¢ -—-—.-d)—k-p Py = (2.8)
3q Bq :
. eeee 33 3 3
=8 —‘7{“‘7 Py Pr Pg *“"‘“*“"“15%'“‘%‘%‘"
’ Ba Sq 9q 3q” 3q
(2.9)

where { ,} is the notation for the Poisson bracket.

The last eq. fixes the only undetermined function in the ge-
neral ized Hamiltonian, eq. (2.4}, exhibiting the fact that all the four
constraints given by eqgs. (2.5) to (2.9) are second class constraints.
These four constraints reduce by four the dimension of the phase space

and therefore by two the configuration space. These two dimensions of the
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configuration space can be seen to correspond to the additional dimension
due to the inclusion of a as a new dynamical variable and the dimension
corresponding to the motion in the direction normal to the surface ¢ =0.

This is easily seen if we perform the canonical transformation generated

by .
1
F, = f Py, (2.10)

where fJ are functions of the old coordinates and P;]/ are the new momen-

ta.
W define f' as follows
= 6@ for i =1,...,n-1 , (2.11)

i . _ .
where ¢ are the new coordinates caracterizing the points on the surface

¢{(q) = 0. W may choose QI in such a way that

Besides we assume

7=l . (2.12)
The old momenta are given by
p., = ?—E.’_z,. = ._3..¢._., + E_Q;i P,
z 3q7' aql n aqz J

which can be solved for Pn' W get

Pn 3¢ 3¢ LpL
—ty Ly 3G
3q7 3¢’
what shows that
P =x =0
n 3.

From these results we see that the four egs. Xi=0 eliminate the two pairs
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of canonical variables: {a,8) and (¢,Pn). The Dirac Hamiltonian in the

reduced space of (Pi’Qi)’ Z=1,...,m-1, is given by

L%
H = 7 g Pi Pj’ (2.13)
where
e = 7 % _3%
k=1 3q 3q

is the metric tensor of the surface ¢=0

3. DIFFUSIONEQUATION FOR PARTICLES
CONSTRAINEDTO SURFACES

In this section we derive the diffusion equation for an en-
semble of non-interacting particles, subject to white stochastic Forces,

moving on & surface.

W start from the Hamiltonian, obtained previously

_1 =i
~1J . .
where g is the metric tensor.
Hamilton's equations are
L H -iJ .
§° =22 = P. (3.1
3pi J
.. -7k
P o= - __.,3H7J = -.;_ ——r-agt PP, . (3.2)
3g agt Y

Let us assume a stochastic force acting on the particles with

a white correlation:
z 7
<F (t)Fj(t') >= 2K sj S(t-tt) (3.3)
and consequently,
-1k _k

<F,L.(t)Fj(t')> =<g " F (t)Fj(t')> = 2K g-ij s{t-t') . (3.h)
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The viscosity is introduced as the tensor

7 7
A
(R

what gives for the covariant force the following expression

-  3H
Fi= 7Y 955 %P, (3.5)
J
From these consideration¢ we finally arrive at the egs. of motion:
oA
9" =55
(3.6)
’ 9H - 9H
P.="—-—r‘g..—_+F. .
7 342% g BPj 7

To arrive at the Fokker-Planck equation for the distribution
G(P,@,t) one must calculate the correlations of the dynarnical variables

at two instants of time and we obtain from eq. (3.4) and (3.6):

ali

A
baT> = gp AT
. (1 |- J-\
all - all
<A}J>= =_,.-yg,,_‘_JAt
{ ag’ ¢ 3P

<ngt Ag7> =<ngt LP.> = 0 (at?)
<AP. AP .> = 2K g. , AT
z J

with these results we wrire down Fokker-Planck eq. as:

G D {aH GJ“E [[g_ﬁ .z BHJG}%J’é 82¢g
] an BPi ’ SPi 3 Q7’ % an iJ aPi BPJ.

which can be rewritten in the following form:

3G =3 3, Y = 32¢
75 * O =Y 9y, 5 {W‘.' J * X 9:5 55 9P, 3.7)
7 J z J

Obviously any function of # vanishes the leit-hand side ofeq.

(3.7). In particular the function decgcribiny the thermal equilibrium
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Go(P,Q) =27 exp (-8H) (3.8)

vanishes a'lso the right-hand side of eq. (3.7) and is therefore theequi-

librium sollution of the Fokker-Planck eq. if:
BK = y (3.9)

The equation above exhibits the relation between the viscosi-
ty and the strenc¢th of the stochactic forces for a given temperature
(B=1/kT). The coefficient Z is the partition function and here it plays

the role of a normalizing factor.

It is important to observe thatthe left-hand side of eq. (3.8)
describes the purely rnechanical motion of the system. The remaining two
terms on the right-hand side are of stochastic origin and are responsi-

ble for carrying the system to its equilibrium distribution.

Let us define the density at equilibrium as

n-1
- (n-1ys2_.,, _
P, G,(P,Q) = 2 1{_25“_]_ G2 g1

©
—
O
Paie
"
—_——
=]

i=1
(3.10)

The constant c is actually irrelevant to our purpose since it is related
to the total number of particles put into the system, and the equations

are homogeneous of the first degree. We have also set é = det(‘c}{j) .

To obtain the diffusion equation, we shall follow the same

steps as in ref. (7).

We introduce an operator defined as

4N
&
—~
3

)
,8,t) = — |1, 6(r.0,2) (3.11)

where G(P,g,%) is any function of 3,P and t. It is easy to verify that A
is idempoterit (42=4) and its action is to extract from any distribution
function G¢(P,g,t) its cornponent that corresponds to a uniform temperature
everywhere but with the same spatial distribution as given by G(P,q,t),

i.e.
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AG = Gy (P,Q)o(@,t) (3.12)

W may rewrite the Fokker-Planck equation as

3G _
3% ° (F0+1‘1) G (3.13)
where
_ 9 - 9H G
FO G-—KT;-Z-)—:- [gij {BG—Q-Z—,T'O-B—P——):) (3-“&)
K2 J J
and
3H 3G 0H oG
I, ¢ ={H,6} = — =5 - — (3.15)
1 an aPi '513: aQ'L

Our purpose now is to derive from eq. (3.13) a closed equation for p{g,t).

W have:
20 2 a(r, + TG, +G.) (3.16)
G, 3¢ 0 17\ 2 :
with
G, =4G , G, =BG
and
B = TI-4
where | is the identity operator.
Let us observe that
ry G, =1, 6,=0 (3.17)

as already discussed.

W further have

To see this, we take an arbitrary distribution g and we set



and therefore

I AG =T (G, p) =Gy Ty p =0

as Iy is a differential operator only on the momentum variables.

V¢ also have

<

assuming that

PG>0 and &——»0 as P, » i
7 3P7. 1

By similar arguments we can also prove that
A T, A=0
Making use of eqs. (3.17) and (3.18) in eq. (3.16) we obtain

op  _
Gogp =ATy Gy

(3.18)

(3.19)

To proceed we must obtain the equation for G,. Applying B to

both sides of Fokker-Planck equation we get
+ Fl) (G1 + Gz)

or, again meking use of egs. (3.17) and (3.18):
3G

2 .
575_=(Bl"1+r0) G, + T Gy

The previous equation can be formally integrated as

t
G, = J exp[(B T, + YO) (t-t')]I’l G1 dt!
0

(3.20)

(3.21)

where we assume that G,=0 at ¢=0. The meaning of this initial condition
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is that we start with a system in thermal equilibrium and therefore AG=G

at t=0.

Substituting eq. (3.21) into eq. (3.19) we have
t

Gp L =4 ( exp[(B T, + T )(-t)]r, ¢, dt* (3.22)

0 3f L P 1 0 -1 :

From egs. (3.19) and (3.20) we observe that Iy is the operator responsi=
ble for thermal fluctuations of the system. W make the simplifying as~
sumption of neglecting higher order corrections in BI‘1 and thus

t
30 _ gt +
G, af =2 rJO exp [T (¢-¢1)] 1, G, dt

It can be proved that

I‘Or‘lGl=-YI‘1G1
and therefore we have
t
9p . ! y ’
Gy w7 =AT J exp[-y(e-t")]r G dt
0
Ve make 3 further sirnplification, by assuming T'y G, to vary
-1
slowly in time intervals of the order of vy and so we get
p _ 1 2 2
Gogg =5 AT] G1- (3.23)

Making use of the following relations:

- -
J ;g dp, G, P; P, oy
3_7:‘7. =_§7;m {‘7} _5jm j/b}
BQ% mk &mk
and
iy, G
(%] ‘/5 BQJ
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we finally arrive at the diffusion equation:

3% D 3 {—ij %
g e aq’

where

D = 1/(ygR) (3.25)

The operator on the rigth-hand side of eq. (3.24) is the Laplacian ope-

rator in the Riemannian space and D is the diffusion coefficient.

It is important to observe that eq. (3.24) is the diffusion
equation not only for particles moving in a generalized configuration
space with metric given by the tensor gij but is also for particles sub-
ject to arbitrary holonomic constraints, as the elimination of the cons-
traints always leads to a Hamiltonian unconstrained motion in a reduced

configuration space with a modified metric.

4. DIFFUSION EQUATION FOR PARTICLES SUBJECT
TO NON-INTEGRABLE CONSTRAINTS

Let us begin by considering the Lagrangean
1 2Ted .7 \
Lazgijqq )‘aiq (4.1)

which describes a particle in a Riemannian space, subject to the cons-

traint

Proceeding similarly to what we have done in section 2we ob-

tain as primary constraint the equation
m=0

where 1 is the canonical momentum conjugate to A and, as secondary cons-

traint the following equation
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>\+atpi= 0.

These last two equations can be used to eliminate 1 and A from

the extended Hamiltonian and we obtain
1 idi K
=7 97 G0 h (4.3)

where

=1 _da (4 .4)

So far we have not made use of the fact that a.dﬁb is notintegrable. Let

us first assume that a.dl is integrable, i.e.
3q

where ¢ is the integral of eq. (4.2) and 1 is the integrating factor. |In

this case we have

{¢,H} =0

and ¢ plays the role of a generator of gauge transformations and must be

treated as a first class constraint for the system described by H.

The transformations generated by ¢ are

ef qi,nb}

dqi = =0
- o .90 _ -1
p, = ef pi,zb} € % e T ay
and therefore ¢ changes only the component of p parallel to a. Thus we

choose as gauge condition the equation

The equation above, together with the equation
=0

can be used to reduce the phase space of the system by a canonical trans-
formation in which ¢ plays the role of the n-th variable similarly to

what we have done in section 2.
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The Hamiltonian in the reduced space have the form

aB

I -
H*=-2—g paps a,B =1,...,n"]
where
1
- :
gaB) i 0
7 e A T
P

and H is the same as the one given by eq. (2.13) and therefore the dif-

fusion equation is given by the eq. (3.23) as was shown in the previous

section.

If the eq. (4.2) is not integrable, no further invariance ap-
pears in the system and we have to deal with the Hamiltonian H given by
eq. (4.3) defined in the whole Zn-dimensional phase space. The presence

of the consrraint is manifested by the fact that the metric
17 ik J
i’ =g"q
is singular. To overcome this difficulty we consider the system described

by the following Hamiltonian

B(e) = 5% (e) vy P, (4.5)

with

§9(e) = g% Q‘Z(.e) (4.6)

and

Al =6 - (1-0) o q

with this procedure the metric given by eq. (4.6) is no longer singular

and

g =det (g = g/e

With this modification the steps described in section 3 can

be reproduced and we arrive at the diffusion equation
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oopl (G K

and we observe that the limit when e+0 exists and is:
9p ] i .k
2 -p L 5. (7 4% & a0 (4.7)
t 7 k
g 7
wnich is the equation that describes the diffusion of a particle subject

to the non-integrable constraint aic']i = 0, which is structurally diffe-

rent from eq. (3.23) for integrable constraints.

5. HOLOMOMY AS A BIFURCATION SET
FOR THE CONSTRAINED DIFFUSION EQUATION

W will now discuss the behaviour of eq. (4.7) wnen the cons-
traint becomes integrable. Let us first consider the space spanned by

all 1-forms in a n-dimensional Riemannian manifold.

To every 1-form w = aidql , Wwe have a constrained mechanical
system and we are interested in how one systern changes into another aswe
change the constraint continuously. One can introduce in the space of
forms a topoloqu that guararitees the convergence of the exterior deri-
vative and the exterior product implying therefore that the set of inte-
grable 1-forms is closed. This is easily seen using Froebenius theorem

which says that w is integrable if and only if
w A ds =0
Thus, if w, isS a sequence of integrable 1-forms that converges to w then
w, Ao = > w Adw=20

what proves that the set of integrable forms is clased.

If w is integrable and £ non-integrable then

_ 1
wn-—m+ZE

is non-integrable. Thus, every integrabie l-form w can be reached by a
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sequence of non-integrable I-forms what shows that the set of integrable
I-forms does not have interior what shows that it is a meagre subset of

the set of I-forms.

These results justify to take the fimit in the diffusion eq.

(4.7) for the non-integrable constraint and we have

8 } * .
L=p— a.{/g_ g”’ ij akp}

It 7
g
with the only difference that
a. =T §¢—
J Bq‘7
and
2, Jk 3¢ 39
TG = = i
ag? 3q

Under these assumptions one can prove that if p is a solution

of the equation above, pf(¢) is also a snlution.

To study the limit of the integrable case we set:

F(e) = 8(¢)

as a necessary boundary condition.

Now we can take the coordinate system such that qn=¢> .In this

case we have

}
g ! 0
lo:s] - SRS m
i
} Iom
with
= 3¢ 3¢
Iom 3q . 5?7;'
and

Substituting this into equation (4.7) we have:
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This equation, except for the special case in which 9nn is constant,
does not coincide with the correct equation for the diffusion with holo-

nomic constraint obtained in section 3.

W may therefore conclude that the holonomic mechanical sys-
tems are bifurcation points for the diffusion equation for general cons-

trained svstems.

6. AN EXAMPLE

To illustrate the previous result, let us consider the diffu-

sion of particles subject to the non-integrable constraint
w' + aw' =0

dependent on a parameter a and in which

xz. dx, + x.dx x,de
w! 1 1 22 2+ p =0 (6.])
B8

The leaves of the foliation given by eq. (6.1) are ellipsoids of revolu-
tion around the x4 - axis with y/8 being the ratio of the ellipsoids a-
xes. We consider only the equilibrium distribution and we can easily see

that the eq. (4.7) has in this case the solution

p = const.

so long as the constraint remains non-integrable. In the limit a»D, the

density stays constant on each leaf and we set

p = const S(¢)

on the leaf ¢=0 of w'.

The predicted surface density on $=0 is therefore

262



pdo = do J const |v¢| 8(g) 4

const |v¢| do for ¢ =0 (6.2)

On the other hand, the surface density predicted by eq. (3.24)

pdo = const do. (6.3)

and we observe a clear disagreement between the two predictions when |vq>|
is not constant. This is so because as we observed in the previous sec-
tion the dif'fusion equation for non-integrable constraint does not con-

verge to the diffusion equation for the integrable case.

To illustrate further this fact we simulated the statistical

equilibrium of particles on the ellipsoid given by
2 2 2 -
9 (x1 + xz) + @l .0 (6.4)

The simulation was made by considering one particle moving on
the surface of the ellipsoid suffering collisions with other particlesof
equal mass and given temperature (g=1). The collisions occured at every
unit of time interval and the particle was observed after each collision,
fourthy thousand times. We considered these observations ofthe samepar-
ticle at constant intervals of time as representatives of the canonical
ensembles and the projected density of particles on the a:3-a>gis and the

equatorial plane were observed.

in fig. (1) we exhibit our data for the particle distribution
as a function of ;3 together with the two predictions given by eqs.(6.2)
and (6.3). The simulation data are plotted as circle points and the pre-
dictions given by eq. (6.3) and eq. (6.2) are represented respectively by
the continuous and the dashed curves. W clearly see that thedataagree
with che prediction of eq. (6.3) what shows that the diffusion eq. for a
non-integrable constraint gives the wrong limit when the constraint con-

verges to an integrable one.

We can understand these results in a simple way byconsidering

Fig.2. The integrable case predicts a constant surface density. By con-
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Fig.l - The particle distribution for the constraint given by eq. (6.4).

The horizontal scale is x3/y. The simulation data are plotted as black
circles. The continuous curve is the theoretical prediction given byeq.
(6.3), and the dashed curve is the prediction given by equation (6.2).

Fig.2 - The section af two ellipsoids of the same folliation given byeq.
(6.1). The shaded areas are the cross-sections of two volumes with the same
basis on the ellipsoids. W can observe that the equatorial volume is

smaller than the polar one.

sidering the vol ume between two ellipsoids of the same foliation we can
argue that to have a constant volunetric density on the equatorial plane
implies a different volunetric density at the poles. Therefore, the cons-
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tant volumetric density everywhere predicted oy the diffusion equation
for non-integrable constraint cannot be reproduced when the constraintis
integrable. In physical systems in which the non-integrable constraint
changes to an integrable one, we would suddenly observe a change in the
spatial distribution of particles when the constraint become integrable.
W must observe on the other side that the Hamiltonian description for
non-integrable constraint does not give the correct dynamical equations
and the discontinuous behaviour may not correspond to the actual physi-

cal situation.

7. CONCLUSION

W have derived the diffusion equation for holonomic cons-
traints, eq. (3.24), and non-holonomic constraints, eq. (4.7), under the
assumption that the dynamics for the non-holonomic case is given by Ha-

milton's principle.

Though Hamilton's principie does not give the same dynamics,
it is a natural extension of the dynamics of holonomy into the realm of
non-holonomy. W say natural in the sense that the non-holonomic equa-
tions of motion go continously into the holonomic ones. This does not
guarantee the continuation of the diffusion equations for the two clas-
ses of constraints. In fact we have shown that the holonomic setof cons-
éraints is a bifurcation set for the diffusion equation. This immediatly
raises the question as to the nature of the diffusion equation for the
true non-holonomic dynamics. In a previous paper7 we showed, for a res-
tricted class of non-holonomic systems, those for which Liouville's mea-
sure is invariant, that the true dynamics gi\}es the same diffusion equa-
tion as the one obtained by Hamiltonian dynamics. Unfortunately this
class is too restricted to permit a generalization. Therefore, the deri-
vation of the diffusion equation for the true dynamics remoins an open

problem.
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