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We develop a one band/may sites model for an isoelectronic im=
purity in a semiconductor alloy. The cluster-Bethe-lattice approximation
is used to study the dependence of the impurity energy level upon the short
range order (SRO) of the alloy. The Kikuchi parametrization is used to des-
cribe the latter. W take into account diagonal disorder only, with pos-
sible off-diagonal relaxation around the impurity site. All the inequiva-
lent clusters of the impurity site and its firstnearest neighboursare con-
sidered, thuc including the important short range alloy potential fluctua-
tions. Results are presented for the local density of impurity states, for

different degrees of RO in the alloy.

Desenvolvemos um modelo de uma banda/muitos sitios para um im-
pureza isoeletronica en uma liga semicondutora. O método "cluster-Bethe-
-lattice'" ¢é utilizado para estudar a dependéncia da energia do nivel de
impureza com o grau de ordem de curto alcance (OCA) daliga, descrito pela

parametrizagdo de Kikuchi. Consideramos apenas desordem diagonal , com uma
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possivel relaxacdo ndo-diagonal em torno do sitio da impureza. As flutua-
¢Ges de curto alcance do potencial da liga sédo consideradas através do es-
tudo de todos os grupos inequivalentes de primeiros vizinhos da impureza.
Sdo apresentados resultados para a densidade local de estados para dife-
rentes graus de OCA relevantes para a interpretagdo de experiéncias recen-

tes deluminescéncia em ligas semicondutoras.

1. INTRODUCTION

The problem of impurity states in pure, ideal, semiconductors
has been investigated extensively for many years, both experimentally and
theoreticallyl’z. More recently, interest has been directed to the pro-
blem of iso-electronic impurities inalloy semiconductors, such as
GaASI-xPx TN P,
question, due to several difficulties: the host system is itself "impure"”,

From the theoretical point of view, this 1is an open

very little is known about local relaxation effects which are, in princi=
ple, dependent upon the local order in the alloy, and screening effects
are not entirely understood®. Within the virtual crystal approximation for
the host material, several models have been developed in the past fewyears
to explain the properties of N impurities in Ga(As,P), which are more or

L3637
14269

less successfu . Recent experimental results for luminescence in the

8 and for quaternary alloys (in,Ga) (As, P)®have shown

Ga(As,P): I system®
that local order effects must be taken into account if one wants to fully

explain the experimental data.

The aim of this work is to present a simple one band/many si-
tes model of an iso-electronic impurity in an alloy semiconductor, which
allows us to describe important effects of short range order {SRO) in the
alloy upon the energy position of the impurity level. In spite of its sim-
plicity, our model includes all the important features of a more realistic
treatment, with the advantage of being quite transparent. W hope that it
will serve to elucidate some of the questions connected with the impurity
in an ailoy problem. In Section 2 we present the model hamiltonian and dis~
cuss the method of solution. In Section 3 we discuss the alloy statistics
and in Section 4 we present some numerical examples. Finally, in Section 5,

we present our conclusions.
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2. THE MODEL HAMILTONIAN

Let us start by describing the physical model of interest to
us. Ve consider a ternary alloy semiconductor, for instance, In{As,P),with
disorder restricted to one sub-lattice only. In addition, we consider one
heavy iso-electronic impurity, e.g. Sb or Bi, which replaces an anion and
which may produce a bound hole state. This particular choice of a model
was dictated by our study of the quaternary alloy (In,Ga) (As,P)®, but the
results which we obtain are more generally applicable. In our one-band mo-
del, the valence band, derived mainly from anionic states, is represented
by a tight-binding hamiltonian with one s-like state per site on a fcc la-
ttice. W consider only diagonai disorder. Then, the hamiltonian may be
written:

- ) 2.
H=H +H +H (2.1)

In egn. (2.1):

H, =C Ejn> <n] +V & |n><m| , (2.2)
n n,m

where Eo is the average atomic energy and the second sum is restricted to

first nearest neighbor pairs on a fcc lattice. If we indicate the two anion

species by A and B, and the concentration by x(AxB}_x), then:

Ey =z By + (1 - 2B, . (2.3)

The term HA corrects the virtual crystal approximation by re-introducing

the proper alloy potential fluctuations:

B, =}}i‘6n [n> <n| , (2.4)

where, according to the site occupancy, § =6, =E, ~E = (1-2) (EA—EB)=
= (1-x).A or §,=6p=Ey - E = -zA. Finally, the third term in eqn.{2.1)
desrribes a single impurity placed at the origin:

iy = §,10> <0 + V. EL‘ (In><0] + |0> <nf) +

+W I |n> <m|
(e,m) ’ 2.5



where 6I = EI -E VI is the hopping matrix element between the impurity
orbital and its first nearest neighbor orbitals, and W describes possible
relaxation effectsof the nearest neighbor clusterof the impurity”. The
prime indicates that the summations are restricted to the 12-atoms nearest

neighbor cluster of the impurity.

Our aim is to calculate the local density of states at the im-
purity site, taking into account the effects of the alloy potential fluc-
tuations in the neighborhood of the impurity. To do this, we employ the
cluster-Bethe-lattice approximation. Although it has been extensively dis-

10,12

cussed in the literature , We review briefly here the points of inte-

rest to us.

in Figure 1, we present the tree used as an approximation for
the fcc lattice. The basic element is a tetrahedron, which allows us to
take into account the fact that, in the fcc lattice, two atoms, nearest
neihbors to a thirdatom, may also be nearest neighbors to each other. The
immediate cluster around the impurity is described by four tetrahedra with
one common vertex - the impurity site =. This is consistent with the sta-
tistical approximation used to describe short range order effects in the
alloy, which is discussed in the next Section. The procedure for solving
the dynamical problem, eqn. (2.1}, is as follows. A particular distributi-

on of A and B atoms in the 12 sites around the impurity is chosen and the

Figure | - The central cluster and the Bethe lattices in the
tetrahedral approximation for the fcc lattice. The coordina-

tion number of all the atoms in the lattice is 12.
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equations of motion for the matrix elements of the resolvent of (2.1) are

written down. That is:

12
I _ B8
(Z EI) Goo =1+ VI L G7.0 , (2.6)
J=1
B8 I B!
(Z-¢,)G, =V.G +W L G. +V I G . (2.7)
B" "o I o0 () 70 2(5) 20

In (2.6), the summation over Jj covers the 12 n.n. of the impu-
rity, the superscript B indicates the anion species occupying the g-th si-

te (A or B) and, as usual:

-1
G, = <n|(Z - H) [q> , (2.8)
with H defined in (2.1). In (2.7), the 12 n.n. of the j~th atom are divi-

ded into three groups: the central (impurity) atom; 2 nearest neighbors to

the impurity and to the J-th atom, which belong to the same tetrahedron
{cf.Figure 1), indicated by the index i ; and 9 nearest neighbors which be-
long to the Bethe lattice. To obtain a closed set of equations, we now ma-

ke use of the Bethe-lattice approximation, for the virtual crystal hamilto~

n_igﬂ, and write:
B
T G, =9%¢¢G., (2.9)
2G) * Jo

where the trsnsfer function ¢ satisfies:
(Z-e, ~2W)o=V+ 9V o> . (2.10)

This is the standard solution to the Bethe lattice problem”.
The justification for treating the crystal, further away than the nearest
neigbor cluster, within the virtual crystal approximation is that, if the
impurity state if fairly well localized, it is not very sensitive to po-
tential fluctuations in distant regions of the crystal. Since the branch
cut of the function ¢ determines the band edges for the virtual crystal,
we have a very precise way of defining the energy position of localized le~
vels. These are always determined with respect to band edges ofthevirtual

host crystal. The solution of (2.10) is:
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${z) =T%_V [z - €, ~ 20 /(2 :80 - 2y) - 367%) , (2.11)

.t .
where the sign is always chosen so that ¢{Z =E +£0) tends asymptoti-

cally to zero outside the band }imits and im} (% +7,‘0+) > 0 withiri the band.

Let T = 1 to 4 label the four tetrahedra which have the impu-
rity site as a common vertex and Yo the corrésponding anionic configura-
tion. Then we can easily show that the sum over j in (2.6), restricted to

the three atoms belonging to the t-th tetrahedron may be written:

§ GSO = (z5v) 7, et (2.12)
where:
D(z5v.) = [(e1) (e2)+(e2) (ea)+(e3) (e1)+2W (1) +(e2) +(e3) )+3W° ]
[(e1) (e2) (€3) - W2 ((e1)+(e2)+(e3)) - 2w® ]71 {2.13)
and
(87:) =7 - e, - 9V ¢(2) . (2.14)

The energies = take up the values €, Or €p depending on the particular

configuration YT'

Hence, for one particular distribution of atoms among the n.n.
sites of the impurity, we may write:
-1

Gy, = [6-e,- 7 T D(5v,)] (2.15)

In the next section we study the alloy statistics and define

alloy average of Gl{,o.

3. THE ALLOY STATISTICS

To define the alloy statistics we follow the work of Kikuchi

who has analyzed in detai! the problem of short-range-order in lattices,
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such as the one we consider, where it is necessary to go beyond the pair

13w want to describe SO effects in the cluster around the

approximaticn
impurity site. Once this cluster is decomposed into 4 tetrahedra, we are
left with thkree free sites per tetrahedron, the fourth being always occu-
pied by the impurity. W may then define four probabilities @(IJk), with

I,J,K = A or B, such that:
Q(444) + 3Q(44B) + 3Q(4BB) + Q{BBB) =1 , (3.1)

which describe the occupation of the three ''free' vertices of one tetrahe-

dron. Following Kikuchi, these probabilities are parametrized as follow:

Q(a44) =+ (1 + A -32, - &)
Q(44B) = 1 (2, + &,)
2 2 2 (3.2)
qQaBB) =1 (z, - &,)
Q(BBB) = % (0 -x-32, +&)

where A = 2x-1, Z, = P(4B) is the pair probability and &,= §(44B) - Q(4BB).
To simplify the analysis, we restrict ourselves to a 50-50 alloy, for which

A=0. In Figure 2, we show the allowed variations of Z, and 52, which gua-

rantee that all @'s lie between 0 and I. The sum rule (3.1) is automati=

ZZ
r 040
X

M R N

I !

-025 r 025 g,

Q

Fig.2 - Upper part: the allowed values of the Z, and &, Kikuchi parameters
for a 50-50 alloy are contained within the solid lires. Lower part: values
of Q(A44) (solid 1ine) and @(44B) (dashed 1ine) along some directions in
the (2,,&,) plane.

237



cally satisfied by the parametrization above. In Figure 3 we showthe pro-
bability distribution for A atons in the cluster for several allowed val ues
of the pair (Z,,£,). This Figure shows clearly that the pair probability
7; determines the width of the probability distributionand that £, deter-
mnes its ''skewness''. W renark that all probabil ity distributions obtai-
ned for allowed val ues of (2Z,,£,) yield and average val ue of 6 for the num-
ber of A(or B) atons in the cluster. Since the concentration is not va-
ried, the only freedomwe have is to change the degree of SRO in the alloy.

V¢ can now define an average value for the function Gﬁ_o. In
the tetrahedral approximation, the 2'2 possible clusters are reduced to 35
i nequi val ent ones. These can be classified by the nunber of triangular
units of type 444, AAB, ABB or BBB that they present. Nunbering these
sequentially from! to 4, the weight of a given cluster configuration is:

040—
i 1 1 1
040— -
020_ OA-VG) _
P | ! !
|
3_—:;: (1/3,0) |
3 F -
2
Q. | | 1 1. ] 1
040 .
1/4,0
020} (172,0) —
oo s 1 ] l 1 + o 4
040 _
(0,0)
0,20} l } ! -
] 1 ! l I ]
0 2 4 6 8 10 12ny

Fig.3 - Probability distribution for A atoms in the cluster of nearest neig~
bors of the impurity, corresponding to various special points on the (zz,gz)
parameter space. The values of (2,,E,) are indicated and correspond, from
bottom to top, to the points I', B, X, ¥, and N of Figure 2.



l; - ny ng - ns Hy
[@(4a44)] [3q(44B)] [3q(4BB)] [e(BBB)] , (3.3)

W) = T
where
ny +n, +ny +n, =h
Thus :
I I
<Gy, (Z2)> =1 § w(r)-¢y,(;T) , (3.4)
NNaNatly, N1+N2+3+ny b
where:

I 7 2 . . .
Goo(25T) = [2 - e, = V. (n,D(2;444) + n,D(2;AAB) + nyD(Z;ABB)

+ n,D(2;888))] " . (3.5)

Once the dynamical problem is solved for each one of the 35
inequivalent clusters, as described in Section 2, eqgns. (3.3) and (3.4)
allow us to define the average local density of states at the impurity si-
tes. W rernark that, within the approximations made in egs. (2.1), the so-
lution of the dynamical problem, i.e., the determination of the energy of
the localized impurity level (if any exists) for a given fluctuation ofthe
alloy potential in the immediate neighborhood of the impurity, is indepen~
of the statistical averaging of the fluctuations. This is due to the fact
that we have assumed parameters to describe the impurity which are inde-
pendent of the particular configuration of the cluster. In reality, rela-

xation and screening effects are dependent upon the local alloy composi=

tion.

4. NUMERICAL EXAMPLE

We apply the formalism developed in the two preceding Sections
to a model InAs0 5P0 5 alloy with one isoelectronic impurity of Sb. The pa-

rameters of the hamiltonian consist of the three atomic energies EAQ, EP

and ESb’ the valence band width (which is determined by V), and the impuri-

ty related hopping matrix elements \/I and W. For the common valence band-
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width of InAs and InP we take 10eV, which yields in the Bethe lattice ap-
proximation ¥V = -0.83 eV. The sign is chosen so as to place the maximum o f
the density of states near to the top of the band. The three atomic levels
are determined by the ionisation energies of the three pure semiconductors:
InP (5.72 eV), inAs (5.44 eV) and In$b (5.07 eV)'"*. Finally, we set simply
Y

following remarks are in order: this is not a realistic description of the

=W = aV, in order to reduce the number of free parameters to one. The

valence band of In(AsP); the ionization energies allow us to place the bands
of the pure compounds with respect to each ottier, and hence to determine
E E
pse Zp and Egps
a realistic description of the potential fluctuations in the alloy or the

the "atomic' energv levels E but they do nct provide either
impurity potential. However, given the simplicity of our bssic model, this
choice of parameters can be used to discuss quantitatively the results of

alloy potential fluctuations in a specific case.

W can now determine, for different values of the parameters
a, whether, for a given cluster configuration I' an impurity level is split
-off thetop of the valence band. The fluctuation of the cluster poteritial,
with respect tothevirtual crystal average, becomesmore positive the more As
atoms there are in the cluster. This means that the cluster formed by one impu-

rity atomand 12 As atoms has the iargest (positive) fluctuation and,as such,

produces the highest lying impurity level. Similarly, the cluster of impu-
rity and 12 P atoms produces the lowest lying impurity level. Thismayseem
strange, when we consider that the size and electronegativity differences
are smailer for Sb and As than for Sb and P, and hence that it is more li-
kely that the latter cluster will produce a bound state, than the former.
However, it must be kept in mind that the band edge is determined by the
virtual crystal approximation and that P-rich clusters present an overall
negative energy fluctuation with respect to the average. Hence, this may
lead to tne formation of virtual bound states i.e., resonances in the band
of allowed states. However, in the present work we concentrate our atten-
tion upon localized states, completely split-off from the band. in Figure
4, we show the energies of split-off states associated with clusters of
S + 12As and Sb + 12 P atoms, as a function of the relaxation parametera.

All cther states have energies between the two extreme cases considered in
.the Figure. We see that below a certain critical value a = 0.86 there are

no split off impurity states. For 0.86 < a < 0.94 less than 35 clusters

240



E(meV)

n
o
o
]

150 -

100 ' _

50— -

4
| I |
08 09 1.00 110 [«

Fig.4 - Split-off impurity levels as a function of relaxation parameterafor
cluster of 12 As atoms {upper curve) and cluster of 12 P atoms (lower curve).
The top of the valence band is at 0 MeV. The intermediate clusters have im-

purity levels with energies between the two extremes plctted in the Figure.

present split-off states; for a > a, = 0.94, all the 35 clusters present
localized impurity levels. These are shown, for a = 0,96, on Figure 5. In
it are given the energy position of a level, its weight on the central-im-
purity-site, the configuration which produces the level, specified by the
four integers (nyn,n4n,) and the total number of As atoms in the clusters.
Configurations which produce almost degenerate levels (energy difference

less than 1 MeV) are grouped together in this diagram.

In Figures 5 and 6, we present the average local density of
states, in the energy interval of the impurity levels, for different para-
meters of SRO, corresponding to the probability distributions shown in Fi-
gure 3. The inipurity levels have been broadened by introducing an imagina-
ry part of the energy of 0.5 MeV. In Figure 5 we consider the symmetric
distributions, covering a high degree of RO (lower part), the randomalloy
(middle) and slightly less random alloy (top). In Figure 6, a sequence is
presented which goes from clusters with a high probability for large num~

bers of P atoms (lower part), random alloy (middle), to clusters with a
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Fig.6 ~ Average local density of impurity states, broadened by 8.5 MeV, for
three different degrees of SRO corresponding to the points T' (lower part),
R (middle) and X {(upper) of Figure 3.
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Fig.5 - tmpurity levels for the 35 inequivalent clusters for «=0.96. Shown
are the energy position of the levei {same convention as for Figure 4}, the
corresponding configuration of the cluster indicated by the 4 integers of
eqn. (3.3}, the number of As atoms in the clusters being given in paren-
242 thesis and, finally, the weight of the impurity level in the central all.



high probabil ity of As atoms {(top). Due to the almost uniform distribution
of impurity levels for the various clusters (see Figure 5), the local den-
sity of impurity states (LDO!S) resembles closely the probability distri-
butions shown on Figure 3. This is the case in part because we decoupled
the dynamical and the statistical aspects of the problem. Taking into ac-
count a different relaxation for each cluster will produce a less uniform

distribution in energy of the impurity levels.
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Fig.7 = Average local density of impurity states, broadened by 0.5 Mev,
for three different degres of SRO, corresponding to the points M (lower
part), R (middie) and N (upper} of Figure 2.

5. DISCUSSION AND CONCLUSIONS

In this paper we have studied the effect of SRO upon the local
density of states in an alloy semiconductor. W have taken as a specific
model that of an isoelectronic impurity in a single band/many sites appro-
ximation. Although the model is not realistic enough to allow us.to make
precise quantitative predictions, some qualitative remarks of importance
can be made. In completely random alloys, the heterogeneous broadening can
be appreciable (tens of meVs). In alloys presenting a certain degree of SR0,
the LDOS of the impurity levels acquires a structure, which may reflect

that of the alloy probability distribution around the impurity site. In
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extreme cases, well defined peaks are produced, the widths of which can be

considerably smaller than the overall width of the inhomogeneous broade-

ning.

The question of the observation of such effects remains open.
On the one hand, there is the possibility of selectively exciting impurity
levels within a spectral interval®, which would allow at least an indirect
probing of the LDOIS. On the other, luminescence spectra may provide evi-
dente for the importance of O effects in alloys, as in the study of
inl—xGixAsyPl"y by Etienne et aZ.’ In such a case, thermalization effects
lead to a partial occupation of the impurity levels and shifts of the lu-
minescent line may be observed, for an alloy of uniform composition,as the
degree of SRO changes. With the increasing technological importance of se-
miconducting alloys, it is clear that, in the future, many more studies of
the role of impurities in these systems will be performed. For those inte-
rested in the properties of disordered systems, semiconductors alloy offer
an unique opportunity, because, unlike their metallic conterparts, very

powerful optical techniques can be employed to elucidate their properties.
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