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The problem of an electric circuit consisting of a resistor,
an inductor, a capacitor and a couple of zenner diodes in series is stu-
died in the framework of Convex Analysis. The differential inequality go-
verning the circuit is shown to yield a unique stable solution which can
be calculated through standard schemes. Numerical results are shown to

agree with experiments.

O problema da resposta de un circuito elétrico, consistindo
de uma resisténcia, uma bobina, um condensador e um par de diodos zenner
em série, é estudado dentro do formalismo da Andalise Convexa. Mostra-se
que a inequagao diferencial que governa o circuito possui uma solucao es-
tdvel que pode ser calculada através de algarismos usuais. Apresenta-se
também o resultado de uma simulacdo digital do circuito, baseada em um
algarismo tipo preditor-corretor, e compara-se este com medicdes tomadas

en laboratério.

1. INTRODUCTION

In Ref. 1we considered a couple of zenner diodes in parallel with
the capacitor of a RLC circuit and showed, using concepts from Convex Ana-
lysis, that this configuration is the simplest one for the simulation of
dielectric disruption from the phenomenological point of view. In the pre-

sent paper we shall consider the zenner couple in series with theR, I and
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C elements and analyse the differential inequality governing the circuit

with the same methodology.

W point out firstly that the elasto-plastic spring is the me-
chanical analogue to the parallel configuration, as well as the elastic
spring subjected to a dry friction is the analogue to the in series con-
figuration of the circuit. A similar mathematical analysis to the one we
shall develop here can be seen, for example, in references 2,3, where a
model for a pile-soil interaction through friction is discussed. Secon-
dly, we remark that those two basic possibilities to arrange the couple
of zenner diodes with the capacitor in the circuit (parallel and series)
correspond to the two possibilities of having variational inequalities to
represent a system: to have unilateral constraints on some variable or to

deal with non-differentiable functionals.

The aim of this article is to present theoretical, computati-
onal and experimental results about the nonlinear series RLC circuit. The
plan of it is the following. In Section 2 the physical model is described.
The functional framework employed and a theorem asserting that we have a
mathematically well posed problem are explained in Section 3. Section &
contains a description of the computing algorithm and the related conver-
gente results. In Section 5 the output of a numerical simulation is pre~
sented, and then compared with laboratory measurements in the next Section
6. All the mathematical proofs are developed in Section 7. Finally, in

Section 8, we suymmarize general conclusions.

2. THE PHYSICAL MODEL

The fundamental circuit equations are

- Conservation laws {Kirchoff):
= + + +
E(t) =V, Ve t v, Ve s (2.1)

(see Figure 1),
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E(t) = applied voltage,
q, = charge at the capacitor's plate,
(VL,IL) = (voltage, current) at the inductor,

(VR’I}?) = (voltage, current) at the resistor,

(VZ,IZ) = (voltage, current) at the cell representing the couple of zenner
diodes,
Vo IC) = (voltage, current) at the capacitor;

- Behavior laws:

VL(t) =7 ar(e) (Lenz) ,
dt
VR(t) = R I(%) (0hm) ,

(2.2)
4,(8) = ¢V (8)

I,(t) = F(v,(8)) ,
where F, ths characteristic function of the arrangement of zenners,is gi-
ven by the graph shown in Figure 2. A}l the physical parameters R, L, C

and Z are assumed to be constants, and positives.

It
F
R A
E(t) .
C 'Z 0 +7 VZ
L
Figure 1 Figure 2

213



The graph F is "monotonic™, hence can be inverted, and (see

Figure 3) its inverse

rk
{+2} if I,> 0,
| . . . -
v,=F (IZ) = ({-2,2} if I, 0, (2.3)
{-2} if I, < 0,

VZA F_|
+1
0 IZ
-z
Figure 3

is another graph.

Actually, the physical obtention of such characteristic respon-
se from the nonlinear element involves the use of an adequate high gain and
low output impedance operational amplifier together with the two diodes, as

for example the one shown in Figure 4.

Adding up, the state of the circuit is described by the ini-

tial value problem, for I(¢) andgq (¢,

OUTPUT

Figure 4
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d
(ii) Z-Z—C=I(t) , t>0, (2.4)

(15) L g +R1 ) + a8 + F1I@) <E ) ,t >0

where equation (2.4) (i ii] is to be correctly interpreted.

3. THE MATHEMATICAL SET-UP

The correct interpretation ot (2.4) is the follow ng. W con-
sider the convex function

fl@) =2lc| , =€ R , (3.1)

and the definition of the sub-differential 3f(xz) of a convex function f
a apoint 2 ¢ R aset defined by the criterion

5 € 3f(@) if and only if fly) > f(z) + z(y-x) ,
vy € R (3.2)
V¢ shall have then
af(z) = Flx) , x € R ,
and the follow ng formulation of (2.4) (iii):
[E-L% - R _%qc](t)e 3F(I() , ¥t>0, (3.3)
in view of definition (3.2), an alternative formulation to(3.3) is
P s mrs L, [0 Gl v ) - £ =
Et) [7 - 1(¢)] ', Vi € R, Yt>0. (3.4)

215



Hence, eliminating the variable qc the combination of equa-
tions (2.4) and (3.4) results in the following initial value problem for

the description of the circuit:

to find M= I(¢), ¢ 2 0, such that

(i) I(0)

1l
(=]

t
(ii) J-Lg'—[+RI+é J[ I(t) dt][j—I(t):] + (7)) -
0

- dt
- £(I(t) = E(¢) [j~I(¢)] , vj € R, vt > o.

(3.5)
Remar k

The classical series RLC circuit correqponds to the limit ca-
se Z=0. If then we take in (3.5) (ii) § = I(¢) #1 we obtain the integro

~differential equation

_ ¢
Ld—I+RI+lJ I(x) dt =E(¢) , ¢ >0 .
ds . ¢
0 .

Let us introduce now some functional space which we shall make
use for the precise mathematical description of the results obtained. If

0 < T < = let

¢%(0,7) = space of continuous functions v(£) on [0,7],

with norm lvlo = max |p{t)] ; 0s¢tsT

IP(0,7) = space of functions v(¢) on [0,7] for which | (£) lp

is Lebesgue integrable, with norm

vl = UT fv(£) P dt]]/p , .p 31
0

L (0,7) = space of all Lebesgue measurable functions v(t} on
[D,T] which are bounded, except possibly on a set

of measure zero, with norm
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ol = inf { sup lu(e)]} .
u(t) =v(¢) a.e. 0 stsT

The theoretical analysis of the circuit which we present is
summari zed in the foll ow ng.

Theerem 3.4

Let 0<Tse and E € L2(0,T) be given such that dE/dt € L%(0,T).
Then there exists a unique function I=I(¢), satisfying

1er”(,r 1%(0,7) %0,1) , (3.6)

d.I [+

= €L (0,7) r?(0,7) (3.7)
(t - .

q(t) =J I(v)dv , q, € 17(0,T) (3.8)

0

which verifies (3.5) for alnmost every t € (OI,T]-. Furthermore, the solu-
tion map E(z) —F—+ I(t) is continuous, in the sence that there exists a
constant X such that

III-IZ|m+}Il-I212+|qé-qglw < K|E*-E?|, , (3.9)
where I* :F(EZ), £=1,2, and qi(t) = fot |I(T)d‘t‘ And.when T » «, we
have 1(7) -+ 0.

This theoremessential ly guarantees that we are dealing whita
wel |l posed nathematical problem that is, the internal consistency of our
nat hemati cal model for the circuit.

4. THE COMPUTING ALGORITHM

To conput e approxi mate sol utions of (3.5) we can use a et hod
based on a convex regul arization of the function f{x) and a standard dis-
cretization in tine for the resulting ordinary differential equation.

¢ take, for € > 0,

217



(x) = {4.1)

e
*t

{ L

Then we modify problem (3.5) substituting f(z} by fs(x). Since the latter
is differentiable, the variational inequality is substituted by the ordi~

nary differential equation

dIe(t) 1 € ’
L—S— ¢ RI(8) + Fal(t) + FII () = E(), (4.2)
with
Z sgn(x) , if e ze,

l
|
£ =ﬁ
{2%2 - (%C)ZZ sgn(x) , if x| e .

Now for (4.2) and (2.4) (ii) the time discretization proposal
is a Crank-Nicolson scheme. Given 7>0 finite and fixed once for all, we

introduce an arbitrary positive integer # and
H=7T/N , tn =nH ., n=0,1,...,N
After this we consider the basic formula
(i) 1%=o0, Qg =0,

c

(ii) L atIn+Rln+]/2 + _IC_ Qn+l/2 - En+]/2-fé(In+]/2),
: (4.3)
n=20,1,...,8-1,

(iii) atQZ T R PO A

N
where {In’QZ}VZ:O intends to be an approximation to {I (), ¢%(¢ )}

and

ath - H-l(Gn+1 _ Gn)

1)

Gn+l/2 - 2-J(Gn+] + Gn) ,
1N
for any sequence {G }n=0 .
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The computing algorithm associated with (4.3) is thefollowing

predictor cor'rector version of it:

¢ 0 0 _ .
(5,) 1% @0 = 0 5

én+ 1

.7 in (4.3)

(g‘n) ln, QZ known, compute predictors l‘nﬂ ,
(ii) and (iii) with:
(! éZ*'}»U””, &'} in the left hand side of (4.3)
(ii) and in (4.3) (iii);

{IN}->{In+I} in the right hand side of (4.3) (ii);

(Sn)In,QZ,an,QZH known, compute éorrectorsl’nﬂ , QZH, in (4.3)

(i) and (iii) with %171 i the right hand side of
(.3)(i1);
(s,) stop at n=N-I . (4.4)

Algorithm (4.4) is unconditionaltly convergent with H -+ 0, and
e + 0. We shall use it in the numerical simulation to be presented next
Section. In more precise terms, we can state the following result, the

proof of which will be posponed to Section 7.

Theorem 4.1

Under the hypothesis of Theorem 3.1, the following equalities

hold for the iterated limits:

Tim 1im  sup :In-I(tn)[ =0, (4.5)
e>0 H-0 Ogngl
lim lim  sup lQZ—qc(tn) | =0, (4.6)

e+0 H>0 QgngW

{I,qﬁ} being the solution of (2.4) (i), (2.4)(ii), (3.4) and {In,QZ} being
defined in (4.4).
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5. ANUMERICAL SIMULATION

In this Section we present a typical numerical resultobtained
by implementing a algorithm (4.4) as a Fortran program. This program was
run in the IBM 370/145 machine at LCC~CNPq, in double precision. For the

input

T=2x10,

2 ift€ [FH,(G+1)H] , jeven,

E(t)
0 ift ¢ (jH,(j+1)H) , 4 odd ,

the output described by the two curves of Figure 5 was obtained. The cur-
ve Qc = @ (t) indicates the process of charge storage at the capacitor,

the reservoir of electrical energy in the circuit.

1040
8.80
7.20
5.60
4.00
2.40
0.80
-080
-2.40L | | ! | L I
0.00 292 S84 8.76 68 1460 1752
TIME
Figure 5

6. COMPARISONWITH EXPERIMENTAL RESULTS

The experimental verification of the theoretical numerical re=

sults presented in the previous sections was made using the non-linear
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properties of' an element consisting of two zenner diodes and an operatio-
nal amplifier as shown earlier in Figure 4. As mentioned before, this am-
plifier (uA741) has a very low output impedance and a high gain. The dio-

des used in the experiment have the zenner voltage of 4.7 volts.

The complete circuity is shown in Figure 6. The part of the
circuit which is attached to the capacitor has the function of dischar-
ging it whenever its voltage reaches a certain value, fixed by the volta-
ge V,. This voltage, on the other hand, must be adjusted in orderto pro-
duce a repetitive picture in the osciloscope screen. In case V1 is too

high one can observe only the permanent regime of the circuit.

NON LINEAR
= |ELEMENT
INPUT b d

L

Figure 6

Figure 7 shows at the top the measured voltage at the capaci-
tor's plates, as function of time. Since the charge is linearly related
to this voltage, it also indicates the way the capacitor is charged under
the applied voltage E(¢), which in the present case is a train of rectan-

gular pulses, as shown in the bottom of Figure 7.

As it can be clearly seen, the amount of additionalcharge
which is added to the capacitor by each individual pulse decreagces with
the time. This result qualitatively agrees with the numerical prediction
(see Figure 5) and also with the simulation for the equivalent rnechanical

system considered in Ref.3.
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Figure 7

The val ues used in this case were: R=3KQ, L=10mH, C=luF. The
scales are such that each horizontal division corresponds to lus and each
vertical division to 20 volts in the input and 2 volts in the output. The
elenents of the auxiliary circuit were: ¥;=3Vv, R;=5602, and T; being the
UJT 2N2646 conponent.

7. MATHEMATICAL PROOFS

Technical details of the proofs of the assertions made in Theo-
rens 31 and 4.1 will be discussed now

7.1. Proof of Theorem 3.1

The proof consists in a sequence of claims and correspondi ng
justifications.

Claim 1 (Uniqueness)

1f solutions of (3.5) exists, they cannot be more than just
one.

Assune there are two solutions, I' and I2. V¢ have
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[L Sy jot e (T)de-Il (t)] ¥ £(7)

- FUNE) 2 BG-IN)] , ViER, W > 0, (7.1)

[; ar? + RIZ + —é— ft 1?2 (T)dr] [j-IZ(t)] + £(F)

dt
0
- F(I2() 3 E[G-12(¢)] , ¥ €R , ¥t >0, (7.2)
1) =712(0) =0 . (7.3)
Taking § = I% in (7.1), = I' in (7.2), and adding,
t 1
I(t) [*L%-RI - 15 { I(T)d‘rl > 0,

) 4

where | =11 - 2. Hence
(i) I(0) =0,

: _ t 2
(ii) % g—t 7(£)12 + R[1(2)]? +7'-5% U I(r)dr] 0,
. _
t>0 . (7.4)

By integration on time (7.4) implies
t | t 2
I(t)|2+ R J [T(t)]%dt + 5% H I(T)d{! < 0,t>0
s “ 0

That is, I(¢) =0, t 2 0, and I'(t) =712(), t 2 O. The two solutions

must coincide, and the claim is justified.
Claim 2 {Convex regularization of problem {3.5))

Given > 0, the initial value problem

(i)I_¢ z%(0,7) N z2(0,r) N ¢O0,T) ,

dr
(ii) a%iGLm(O,T) N L2(0,7) ,
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(iii) g, €17(0,7) N c0,7) ,
dqi
(iv) g (£) =T.() ,0<t<T,

dr

€

(v)LC—ZE—+RI€+éq§+f€'(I€(t))=E(t) L 0<t<T,

(Vi) I(0) = 0,4q.(0 =0 ,

where y_ is defined in (4.1), well defines the sequences {I_}
. € £'g and
{qn}

>0
e>0

Being the associated function to system (7.5) (iv) and (v) con-
tinuou-~and monotone, such a system has a unique local solution which can
be extended to [0,7] in case Ie(t) and qi(t) are bounded on the interval.
in the sequel we shall prove two a priori estimates for (7.5) (iv) and (v)
which will fulfill this boundedness requirements as well as conditions

(7.5) (i), (ii) and (iii), so demonstrating claim 2.

For the first estimate (energy) we multiply (7.5)(v) by Ia(t)’
getting

24120 + RI2E) + 4o L [qz(t)]z + FUI_(ENI_(8) = B()I_(8)

Integrating on time and using the initial conditions:

2c
t t

S GRS L IUE

t - 2
%Iz(t) + R Jo I;(T)d”( b [_qz(t)] +

which is the energy identity for our system. Hence, since

fE’(x)x 20 , x €R

i oo

L ; R i ]
F e+ 3 [0 12+ 55 aSl2 <« 55 (B2 (7.6)
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For the second estimate we start differentiating equation(7.5)
(v):

2T a_ FUT_(+02))-FLT (2))

L dt_€ + R at = +€—+ I}\L_n:o AE = E'(t), 0<t<T .

13

Now we multiply it by Ie ,

2
pa e +R -592+—L52—I2+
2 dt \dt dt 2C dt e

i [FLI (e+08)) £ (£))] [z (t+at)-1_(2)]

At>0 [at]?

= E'(¢t) Ie'(t) R
observe that
[Fo(r, (eant)) -r LT (D] [T (prat)-I ()] > 0,

.and integrate on time to obtain

AT 2 t o dI -2 '
L € € 1 2
7 [Et—] + R Jo [a—;—:l (t)dr + 70 Ig(t) <

dr 12 t
< % [gt—e] (0) + f E'(v)I}(t)dr
0

if we look equation (7.5) (v) at t=0 we get

L %— (0) = E(0}.

Hence we obtain the a priori estimate

I 12 < |E(0) | iE”i ) (7.7)

7

=

R |G
dc |, " 7 |dt
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Since the right hand sides of (7.6) and (7.7) involve only da-

ta, and are independent of E, we can conclude that
. € . ]
(i q, are a 1 in a bounded set of L (0,7),
(ii) I, are all in a bounded set of r7(0,7) N £2(0,7) ,
cZIe .
(iii) 37 are all in a bounded set of L (0,7) N L?(0,7).

This implies in particular (7.5)(ii) and part of (7.5)(i) and (iii). Now,

QE and | g are continuous because of

. ;
BOREADINE IEACLIIRNEARE
6 const. |¢-t| , (7.8)
t dr ar
1.(8) - I_()|=| jT 25 @ds| < |25 o] <
< const. le-tl , (7.9)

respec tively.

The proof of claim 2 is ended

Claim 3 (Existence)

There exists a solution | of (3.5)-(3.8).

Estimates (7.6), (7.8) and (7.9) imply that the sets {q2}5>0
and {Ig}a>0 are uniformly bounded and equicontinuous. Hence by Arzela's
theorem there exists a limit point {qc,l} such that qg»qc and I, » I,
uniformly on |0,7|, for some subsequence. We shall show that this limit

point is the desired solution.

In fact, dqc/dt =| and by the conclusions (i), (ii) and (iii)
of (7.6) and (7.7) we have that | and % satisfy (3.6)-(3.8). ¢ need
then only to show that | satisfies (3.5) (ii) for almost every t € (0,T}.
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Equation (7.5){(v) and the fact that fe is a convex function im-

ply

ar
F ) - £ (T () - |E(t) - L at—a- - RI_ -
-3 i -1 @] 20, vjern

0 <t<T.

Integrating from 0 to T :

T dI€ T ] T e T
L fo ekl dt + R fo Iegdt+5f° chdt+ JO fE(J)dt >

T T I T )
2 f EIJ"Ieldt + J fe(IE)dt +3 Ié(T) + R J I°de +
0 [ 0

1 £ 2 , 1
+ 5 ch(T)i , ¥ie L (o,7) . (7.10)

But we know from the compactness properties of bounded sets in
P spaces that we can ertract from {Ie’qz}vo a subsequence, still deno-

€
ted by {Ie,qc_}€>0, such that

QE q, uniformiy on [0,7] ,
I, | uniformly on [0,7] , (7.11)
e, dr

358—“’ 7z weakly * in Lm(O,T)

Hence, if we take the limit e+0, (7.10) and (7.11) vyield

c¢
Q 0

TdI T 1 Vi T
Lj ai;—j dt + R [ I(j)dt + —J q, Jdt + J Flde »
¢ 0

>I'T . 4 T ()d I 2( T )
> | E[J-—I]t+[ FD)dt + 5 I*(T) +R f T4t +

Q 0 0

2 o, @17, vie 1,0 ,
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that is,

(7 q ; T
|, dI %) . .
J‘o LL T HRI+ c} [j-I]dt + JO [F(5)-F(1) dt] »

T
> ( E(F-I)de , V¥Yj e r'(,1) . (7.12)

)

Finally, through a standard measure-theoretic argument (see the
existence proof in Reé.2) one canshowthat (7.12) is equivalent to (3.5)

(ii), except possibly in a set of measure zero in EO,T].
Claim 4 (Stability)

W have that (3.9) holds true and I(¢) ~ 0 as t > «.

By definition:

-
LL 3—?‘ + A1 + ]5 qg] G-111 + r(G) - £I®

A\

> ) [G-%)] ,a=1,2, YiER, VE> O,
0 =0, a=1,2.

Taking § = I? in equations o = 1 and § =I' in equations a = 2, adding up

and integrating from 0 to t:

Nt

t
(Y-72)%(¢) + R Jro (r*-r2)2(t)dr + 2'—0 (q;—qé)z(ﬂ <

A

" t
[ (E*-E?) (1'-I%)dt < % [ (r'-1%)?(t)dt +
‘0 ‘o

+

1
1 1_p2y2
ﬁ JO (E E ) (T)d’r.
This implies (3.9).

Now take T=e, Since I(t) is uniformly continuous on [0, +»)
(see (7.9)) and also square-integrable, then r(¢) > 0 as t » . And the

proof of theorem 3.1 is ended.
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7.2. Proof of Theorem 4.1

F'or the sake of space saving we do not present this proof he-
re.We refer the reader to Ref.3. There a proof is developedfora formally
more general situation. An argument for the present case can be build
following step by step the proofs of Lemma | and Theorem 2, in Section 6,

and making the appropriate correspondences and reductions.

8. CONCLUSIONS

A mathematical model (equation (3.5)) is proposed to analyze
the response of an electric circuit consisting of elements of resistance,
inductance, capacitance and a non-linearity described by Figure 2, all in
series, to an applied voltage E(t). The well-posedness of this response
problen is demonstrated, both for the continuous and discretized versions
of the model (theorems 3.1 and 4.1). A model consistent numerical calcu~
lation was performed in the IBM 370/145 computer at the Laboratorio de Com-
putagao Cientifica - CNPq and an electric charge X time curve was obtai-
ned which agreed with experimental measurements held at the Laboratorio de

Eletrénica of the Universidade de Brasilia.
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