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Using the transfer matrix method for the one-dimensional
classical anisotropic planar model, we present analytic expressions for
the two-spins correlation functions in the limits of high and iow tem-
peratures. An alignment of spins along the easy direction i— found at

low temperatures, leading the system to an Ising-like beheviour.

Usando o método da matrix transferéncia para o modelo planar
anisotropico classico unidimensional, apresentamos expressfes anaiiti-
cas para as funcdes correlacdo de dois spins nos limites de altas e
baixas temperaturas. Um alinhamento de spins ao longo do eixo de mais
facil magnetizagéo é encontrado en baixas temperaturas, levando o sis-

tema a se comportar como no modelo de Ising.
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1. INTRODUCTION

There is a vast literature on one-dimensional magnetic sis-
tems?. Particularty, for the one-dimensional planar model we can men-
tion some important works, namely: Lieb, Schultz and Mattis?  studied

3 developed some calculations for

the model with spin 1/2; Niemeijer
the spin 1/2 planar. systern in presence of an applied field; Joycel‘ ob-
tained closed-form expressions for the termodynamic functions in the
classical isotropic case, while Stanley® solved the general case of
n-dimensional classical vector spins for arbitrary n. Recently, Love-
luck® obtained numerical results for the classical planar model in the
presence of an applied field and Satija’ derived explicit formulas for
the Heisenberg-Ising, Heisenberg-xy, and xy-lIsing crossovers at low

temperatures, using a quantum Hamiltonian forrnalism.

Anisotropy effects on one-dimensional classical systems have
been studied in some extent since the introduction of the transfer ma=
trix method in the study of these systems by Joycea. For instance, this
method has been applied to the Heisenberg model with single-site ani-
sotropy by Loveluck et al? and to the Heisenberg model with dipolarani-

sotropy by Hone and Piresl® and Faria and Piresl!,

In this paper we will consider the one-dimensional classical
anisotropic planar system with nearest-neighbours interactions for a

ferromagnet, represented by the Hamiltonian

+bsz &Y ]) (1.1

- - x =z
H i (as™ s r

2= 7 “141

where s)é = cosei and sg = sinei are the components of the classical
spin unit vector 540 @ and b are positive constants and we will take
a » b, and use cyclic boundary conditions: Syy1 = 8- The system re-
presented by the Hamiltonian (1.1) is interesting because at low tem-
peratures it crosses-over from planar to Ising-like behaviour: at low
temperature, for a > b, it is energetically more favorable forthe sys-

tem to align along the x direction.
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2. PARTITION FUNCTION

As pointed out by Joyces, the partition function as well as
the zero-field correlation function can be calculated in terms of Ma-
thieu functions. To see it, we will write the Harniltonian (1.1) in the

formH=c¢c H. .
;s b4

where

-BHi,iH = Sa(cosei cos6, , * tanh u sing, 5;"97;.,,]) = fi,i+l (2.1)
and
= /KT, (2.2)
tanh u = b/a (2.3)
The partition function
dei
7 = 2 J 7 exp (fi,iH) (2.4)

can be expressed in terms of the eingenfunctions \bm(e) and eingenvalues

)\m of the transfer matrix exp{fz They are solutions of, the in-

,2+1°
tegral equation

Yy (e

,Z+1 m' 141

(1/27) J oy, exp(f, ) = v, (8)) (2.5}

741

On the other hand, the transfer matrix exp (f I) can be expanded in

terms of the Mathieu functions!?, giving

exp(fy ;) =87 ] (i) ce (6,,-n2) ce (6,,,,7h?)
m
x Mem(cosh u,-z3) + (1/M9) se (eg <h?) se (s, 24177 7%)
x Mg (cosh u,~th)] =g(e,,6, ;) (2.6)
with
h = a/k,T cosh u = 8a? - p2)1/2 . 2.7)

M; and Mr% are normal ization constants given by
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@ = | 52 4'2 =
Mm J lcem(e, R?2)(2 de = w (2.8)
g
and
27
0 - 2312 54 =
M0 = JO [sem (6,-%2)]2 do = = (2.9)

Hence, the normalization eingenfunctions of (2.5) are the Mathieu func~
tions cem(e,—hz) (even) and Sem(O,—hZ) {odd), and the corresponding ein-
genvalues are the radial functions " Mcm(coshu, -Zh) and 77 Msm(coshu ,
-ih) .

in the 1timit N+~ the largest eingenvalue of (2.5) will be do-

minant in the calculation of the partition function:

Tim (1—]- n ZIII) = V2/7 Mco(coshu,-ih) . (2.10)

Moo v

3. SPIN CORRELATION FUNCTIONS
AND MAGNETIC SUSCEPTIBILITY

The spin-spin correlation functions are defined by

dse .
o o - ol a o
Ci g TL ) T o (3 401795 Sjap G.1)
For large ¥, Egq. (3.1) gives
@ v ee il
oy S = mzl (Am/AO) sz‘h) (3.2)
Y oY T (20,8 1072
<7 8j> ,,,E; (Am/AO) Em(h) (3.3)
where
2m 2
- 52 32
Dm(h) (I/M: Mi) i:jO aeo(e, h2) cem(e, h?) cos® de]l (3.4)
Me 0 2% , » . 2
E (R) = (1/M M) [JO ce,(8,-h%) se (6,-h%) sino de] (3.5)



and x:(xgl) is an even (odd) eingenvalue of (2.5).

High - and low-temperature behaviour of correlationfunctions
and zero-field susceptibility can be obtained frcm (3.2) and (3.3)
using appropriate expansions of the Mathieu functions in power series

as follows.

High Temperatures

At high temperatures the parameter h is small and we can use

the asymptotic expressions for cem and sem 13
h2
cey(8, -h?) = (1/Y2) (1 + 5 cos 26) + o(h*) (3.6)
h2
ce (e, -h?) = cose t 5 cos 3a t o(h% (3.7)
2 h?
se (8, -h%) = sing + 5 sin 36 + o{h") (3.8)

Substituting (3.6), (3.7) and (3.8) into equations (3.4) and (3.5), we

easily obtain
Dy(h) = (1/2) (1 + #%/2) + o(h¥) (3.9)
B () = (1/2) (1 = h?72) +o(nh) . (3.10)

W can note that to this order of approximation, we already
obtain the sum rule <(s‘§)2> + <(S‘Z§)2> = <(sg)2> = Z[Dl(h) +E’2(h)] =1,
taking into account only the first term of (3.2) and (3.3). Also, the
ratios Dz(k)/Dl (#) and El(h)/El(h) decrease with R. Then, we can ne-
glect Dg and Ez for 2 > 1.

From (2.5), with the choice Bi =0, for simplicity, and ta-

king the appropriate Mathieu functions lbm for each case, we have

27

28 = [1/0e,(0,42)] jo 5(0,8) ce,(8,-2)(ds/2x)  (3.11)
‘,211 '

2 = [I/ce1(0,~h2)]J g(0,0) ce, (8,-h?)(de/2n) (3.12)
. /
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The above integrals can be solved with help of the equations
(2.6}, (3.6) and (3.7). The results are given in terms of modified

Bessel functions

. - %2 5
N = (1w 12/2)70 1 (k) + 5 1, ()] (3.13)
ez -+ H2/8) M (R) + %2-13(%)] s (3.14)

with k¥ = ga.

. 12y — - _ - .
Since sel(ei’ k%) = Oat ei 0, we set-up ei /2 into

(2.5) and in a similar way we obtain

0. (y - ) - h?
A 0 n2/8) [T, (-p) T 1,(p)] s (3.15)

with p = gb.

. . ) aa .
Hence, the two-spins correlation functions <sosl> are given,

at high temperatures, by

o

(1. (k) + (W2/8)I, (k)]
P ’ 3 (1 +7272)  (3.16)

§s§> = (1/2) (1 + 3h%/8

LTy (k) + (12/8)1, (%) ]

/20 + 5712/8)2 [I1(P) (h2/8)13(p)_

Io(k) + (K2/2)1, (k)]

(1 -n%/2) (3.17)

A
[
o
[v>)
oW
\
u

where we have used the property
L) = (-)" I, (@) (3.18)

The zero-field susceptibility!* may be calculated from (3.16)
and (3.17) in the Yimit for large ¥, giving

lim (2 k,T/Ng2u2) X7 =

N_')Z g /Mg Vg Xp

Io(k) + I (k) + (12/8) [I,(k) + 41, (k) + 71, (k) + b1 (k)]
i (3.19)

I, =1, (k) - (R2/8) [I5(K) + 31, (k) - 4T, (k)]

H 2.2 Yy
Tim (2 kBT/Ng pB) Xp =
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1) + 1) - (h2/8)[I3(p) - A, (p) - I,(p) + 41 ()]

(3.20)
Ig(k) =1y (p) + (#2/8)[1,(p) - 5I,(p) + 41, (})]

W can compare these results with the pure isotropic systern

setting h = 0 in the above expressions to find

-+

By - B = I 0], (3.21)

3
[Io(k) +I, (k)J
I (k) -1 (k)
0 1

Tim (2 kBT/Ngzué) X = (3.22)

Voo T

which are in accordance with the expressions fonded out by Joyce® and

Stanley® for the isotropic Hamiltonian.

Low Teniperatures

For small T, we can use expansions of Mathieu functions given

by Sipsi® for large values of h 13,

Lety = V% cose. Then, we have
(0,12) = e, eV 1% 6n) [, ]
ce,(6,h%) = ¢ e oly) - (116R) [H,(y) + &, (y)] +

+ (1128%%) (98, (y) -, (y) + H (y) /16 +Hg (y)/256]} + ofh~3) (3.23)

cel(e,hz) = (1/72) ¢, e ¥/2 {#, () - (1/167) [B,(y) + B (y) /8] +

+ (1/1281%) [-158,(y) - 3Hq(y)/2 + B, (y)/16 + Hy(y)/256]} + o(n™3)
(3.24)

-2 .
sel(e,hz) =8, e y*/2 {Ho(y) + (\/‘67’2)[[12(?/) - Hu(y)/sj +

- (1712802) (98, (y) -~ Hy(y) - Hg(y)/16 + By (y)/256]} sind + o(273) ,

(3.25)
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where

= (mh/h) /s D0+ 1/6n + 27712802 + o(h'3)]'1/2 (3.26)

Q
!

s (ra/0MY [ s 3/hn 4 159712882 + (732 (3.27)

Q
?

/Y DL - - 12802 + o 7TATY2 L (3.28)

Q
u

th order.

and ¥ (y) is a Hermite polinomial of n
From (3.5), setting the change of variable 6=n/2- 0 and with

help of the reilations between Mathieu functions of different argu-
13

ments*°, we find
! r -3n/2 2
E (h) = = U j cey(8,h?)ce, (8,42)cose de] (3.29)
w /2
Ve note that from (3.23) and (3.24) the integral in (3.29)
will depend on a term exp (-y2) which will be predominant for h large,

except when ¥ ~ 0. Then, this integral will take considerable values on-
ly if 6=«/2, -w/2, -3n/2, Setting the change of variable 6+ y , we

can write for large h

.-31{/2 (ca
de - & } ay. (3.30)

n/2 0
Now, it is a simple matter to show that to first order in h
E (h) = 1/2n . (3.31)
And in a similar way, we find

Dy(h) =1 - 1/2h . (3.32)

The same arguments that we used for taking only the first

term of (3.4) and (3.5) for high temperatures can be used here.

wWe can calculate approximate expression¢ for A’i and A° using
7 m

(2.5) and asymptotic expansions for the Mathieu functions. For instan-
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ce, taking 8, =10 in (2.5), we have

© 2 -, 2/p3\1/2
Ai - [?co/“/z‘ceo(“/z’hZ)]J P y</2 eBa(] Y /h) (a - yz/k)

0

x {H (y) - (1/167) [1, () + B (y)/8] + (1/128%2) [-98,(y) - B, (y) +

+ H(y)/6 + Hy(y)/256]) dy . (3.33)
- 2172

Expanding (1 = y2/h) /2 nd eBa(l y*/h) in powers of

n! y2 we can solve the integral (3.33) using the Gamma function. We

find
xi = V2747 P 1 - (1/16R) (88a - 9/2) +

+ (1/12872) (545/16 - 50 Ba + 48 82a2)] (1 + 1/32h + 81/204842)71 ,

(3.34)
In a similar way, we have
Af = Y2/7H e5a E] + (1/16A4) (172 - 8Ba) +
+ (1/12812) (81/16 - 3LBa + 48 82a2)](1 - 7/32h - 255/2048K2)"1 |
(3.35)

For A? we cannot use the aboye procedure because sel(O,-h2)=
= 0, so we take the ei derivative of (2.5) and following similar sceps

we obtain

M = (VT e 4 vm n3/2) 1 - (3 (8sa - 21)] x (1 - 33207 .
(3.36)

Hence
SRR o(x7%) (3.37)
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AOAE = (Bb/m) [T+ (1/20)(1 - 28a) + om %) + ..] .(3.38)

Putting all results together we can write

< &% = (1 - 1/20) 1+ o(h'3) + .. .]2 , (3.39)

u

(1/720) L [1+(1/27) (1 - 28a)] (8B/R) 1. (3.40)

<&

t

2
Y
59>

o of

From the above expressions we can see that when T gets close

to zero the correlation function <g? s¥> vanishes with T and <sxsx>->l,

072 078
thus the system behaves like an Ising system. The spins align along

the x = direction.

Using the transfer rnatrix technique we can solve the anyso-
tropic model numerically for all values of T 16 even in the presence
of an external magnetic fieid!?7 and such procedure is more convenient
than using the expansions in terms of Mathieu functions. However, the
approach presented in this paper is usefull because it allows ustoget
high and low temperature analytic expressions for the termodynamic

functions.
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the manuscript.
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