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The effect of recently determined three-alpha forces in the
ground-state energy and elastic form factor of 16 is discussed, inthe

alpha-particle model.

Discutem-se os efeitos de forcas de trés alfas, recentemente
propostas na literatura, na energia e no fator de forma elastico do es-

tado fundamental do 180, no modelo de particula alfa.

1. INTRODUCTION

In this paper, we shall discuss the effect of recently de-
termined three-alpha f’orcesl’2 in the ground state of the 160 nucleus.
Due to the nature of those forces, and of the two-body interaction he~
re considered, the oxigen nucleus is properly described in the alpha-
particle model. In this very simplified description, the four alpha par-
ticles are considered as structureless and indestructible entities,
each with electric charge equal to 2e. Although these partirles can
be taken as point ones for the discussion of the spectrum, a correction
due to its extension in space is taken into account in the study ofthe

form factor of the nucleus.

Previous calculations using the aboue alpha-particle model

and two-alpha forces have failed in satisfactorily describingtheground

* Partially supported by FINEP, Brasil, under contract 522/CT.
** CNPq fellowship, Brasil.
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-state energy of the 160 nucleus, in spite of succeeding in the des-
cription of other nuclear properties as the radius and main aspects of
the charge form factor, for example. {f one wants to exploit a bit
more the model, it is clearly of interest to invastigate the effect of
a three-alpha force acting among the nucleus constituents. In the fol-

lowing, we develop this program.

The mathematical method used is a variational analysisofthe
hamiltonian. First we consider a hamiltonian constructed of only two-
body forces - plus the total kinetic energy, obviously. Next, we turn
on the three-alpha interaction arid repeat the calcularions to compare
results. Indeed, we take advantage of some results by other authors ¥4

concerning the calculations with two-alpha forces only.

The trial function is expanded in terms of translationally
invariant four-particle harmonic-oscillator functions. It is construc-
ted in such way as to have definite total orbital angular momentum L-O
arid positive parity. The variational function is completely symmetric
as it should be if we want it to describe a boson system. The explicit

construction of this function is discussed in the next section.

The presentation and discussion of the three-alpha forces con=
sidered are made iri section 3, where the matrix elements of the hamil-
tonian are also discussed. The form factor is calculated in section &

and all the results of this paper are discussed in the last section.

2. THE VARIATIONAL FUNCTION

The ground state of the 160 nucleus, described in terms of
four structureless and indestructible alpha particles, is represented
by a completely symmetric wavefunction with total orbital angular mo-
mentum L=0 and positive parity. Since the forces considered are spin
independent, the variational anaiysis we intend to carry out can be
done entirely in the configuration space so that the above characteri-
zation of the wavefunction will be enough. In order to avoid spurious
energies, the wavefunction must be in addition translationally invari-

ant. In the following, we shall construct four-particle harmonic- 0s=
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cillator states with the above properties and then expand the variati-
onal function in terms of such states. Since this was already done in
some details elsewhere™’>  we now restric ourselves to a brief presen-

tation of that matter.

The trial function is expressed as the expansion
) (2.1)

where «,, are variational parameters to be determined and ¢\‘ are four-
particle harmonic-oscillator wavefunctions (FPHO). The index v stands
for the APHO quantum numbers. The cut in the sum (2.1) is determined
by the degree of the approximation desired (or allowed by the costs in-
volved). This is defined by the maximum quantum number of the FPHO

components.

It is very convenient to introduce the Jacobi coordinates for

a system of four particles, namely,

g =72 (F1-z2) , (2.2a)
&, = N7 (%142 5-2%3) (2.2b)
z, = 712 (X142 48 3-321,) (2.2¢)
Zc'-d = 172 (214%p+a340s), (2.2d)

where :i';a, a = a,b,e,d, are the coordinates of the four particles refer-
red to an arbitrary frame. These coordinates are given in inities of
(ﬁ/mm)l/?‘, where m is the alpha-particle mass and w the oscillator fre-
quence. |t must be noted that zd is essentially the center of mass
coordinate. The other z are-translationally invariants. As it will
be shown later on, the coordinate ;Za is usefuil in the calculation of
two-body matrix elements, while ;b is adequate for the evaluation of
three-body matrix elements. The form factor depends on the coordinate

)—ZC. These comments largely justify the choice of the coordinates (2.2).

Let fnalumu> stand for the state of a harmonic oscillator in
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the coordi nate Ea. if we allowonly zero-quantumexcitation in the cen-
ter of mass coordinate, the total nunber of quanta ~ associated to
four oscillators in the coordinates (2.2) is given by

N = 2n R +2m R +2n R (2.3)
for ng = Rd =0,

Thc FPHO state with definite total orbital angular nonentum
L is obtained from the {na %> by ordinary coupling. The particul ar
case L=O wll be denoted sinply by

|
LRI RIS O R (2.4)
It can be easily shown that the state (2.4) is independentof the order
of coupling the various angul ar nonenta ﬁa .

The richness of properties of the Jacobi coordinates (2.2}
is not yet enough to facilitate the discussion of the pernutational
symetry of the FPHO states. For this purpose it is convenient to in-
troduce the Kramer-Moshinsky coordi nates which are defined by

V= 1/2 @p4,2,) (2.5a)
Uy = 1/2 @y, 2, 2,) (2.5b)
U, = 12 @, %, ,) (2.5¢)
- -

Yy, = xd (2.5d)

V¢ shall denote the FPHO states, with L=0, in the Kramer-Mo-
shinsky coordinates by the ket

[n1£1~’"2£2’”3£3) . o (2.6)

This state has », = 2, = 0, allowing again no excitation of the center
of mass, and is represented by a round ket ) to distinguish between the
angul ar ket > in (2.4).
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It must be emphasised that the quantum numbers nizé in (2.6)
affect the coordinates g—in (2.5) and not the laboratory coordinates
> -

£..
7z

The relative Kramer-Moshinsky coordinates and the relative
Jacobi ones are related between themselves through an orthogonal trans-
formation, so the total number of quanta (2.3) is also given by

N = 2n1+21+2np42042n3+23 (2.7)

Explicitly, we have the following relation

7, 71 76 -A73 | | &,
g, =77 A% -7 E, (2.8)
7, 0 273 73| | %,

The parity of state (2.6) is given by the parity of N in
(2.7). As the parity of the ground state of the 160, is even, we must
have g;+2,+25 even. So, the three 2's must be even ortwo of them can
be odd. This last possibility is to be disregarded if we want (2.6) to
be completely symmetric®. Thus, all the angular momenta in (2.6) are

even.

Finally, the state ¢v with the properties mentioned in the

beginning -of this section is given by .

o
i

= 4, [lnyoy,m002,7303) + [n12y,7383,1585)
+ |np25,m121,m383) + |nofz,m323,m187)
+ Inala,nlﬂ,l,nzlz) + [n32,3,n222,n19,1)

{nlzl,nzzz,n323)s , (2.9)

i

where the normalization coefficient AV is such that
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Y176 if all pairs (nili) are different
A ={ 1/6 if all pairs (nili) are equal (2.10)

L1/1/12 otherwise .

3 MATRIX ELEMEMTS

In the last section, we have discussed the FPHO states in
terms of which we expanded our variational function. {t was mentioned
that the Kramer-Moshinsky coordinates (2.5) are convenientto construct
FPHO states with defined permutational symmetry and parity. Neverthe~
less, the Jacobi coordinates (2.2) are suitable for the calculation of
the matrix elements of two-body and three-body operators as well as
for the calculation of the form factors. So a linear transformation
from the states (2.6) to the states (2.4) is rather convenient. The
coefficients associated with this transformation are those in the foi-

lowing expression (Z,7,kx = 1,2,3)

ln % Sy JL nk2k3 =

!nala R S N S L lnz%’ng% "k k) (3.1)

where the sum is extended over all non negative integer values of nos

Jla, ", , SLb, n, and Qc subjected to the condition (2.7) and to the con-

dition
> - -
£a+fcb+mc—0 (3.2)
The bracket [nala 'nbgb ,nCFé In Z n a . nk k) is known in ge-
neral3’®. |n the case of =0 it reduces to

<na2a,nb2b,nclcInili,njzj,nklk) =

L
()052<w2anlenz nJL k)<n b,nz gfnznkk,a) . (3.3)
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The brackets appearing in the RHS of (3.3) are Moshinsky
coefficients®. The general ized Moshinsky coefficients are associated

with the angle g defined by
cos(B/2) = V173 , sin(B/2) = vV2/3 . (3.4)

The properties of these ccefficients are discussed in Ref.7.

In the following, we shall discuss the hamiltonian whose ma-
trix elements between states (3.1) we are interested in.

Let us consider the four-particle hamiltonian

4 4
H= (Fw/2) 24 7 V. (s,£) + 7V (s,t)
o Loete 3 s v r,00]
+ ) V3u (s,t,u) (3.5)

8<t<y

The first term is the kinetic energy, Vc the Coulomb potential, V(m tha

a-o interaction, and V. o the 3a-potential.

3
The an-o potential we shall use in this paperwasconstructed
hy Ali and Bodmer®. It is an f-dependence phenomenclogical potential
whose parameters were fitted as to reproduce the phase shifts 60, 62

and §, associated with a-a scattering. Explicitly it is given by a

superposition of attractive and repulsive gaussians as

s 42 52 2 2
Vs (s,¢) £=022 4 [Vm exp(-uprs,) + V) exp{ ”A;a”st)] . (3.6)

Ali and Bodmer adjusted several sets of parameters. The ona we shall

use here is shown in Table 1.

The 3a-potential is described by an attractive gaussian

V3a (s,t,u) ='V0 exp[-)\(rst + rgu. + riu)] . (3.7)

For this component of the potential energy, we considered two recently

constructed potentiaisl’2 whose parameters were adjusted in distinct
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Y
I VRZ (Mev)r Hpe Vi (Mev) L)

0 475 0.7 - 130 - 0.475
2 320 0.7 - 130 0.475
I 10 0.7 - 130 0.475

Table 1 = Parameters of the Ali-Bodmer potential conside-

red in this paper.

forms. Both potentials were adjusted in order to reproduce the ground
-state energy of the 12¢ nucleus. Additionally, Portilho and Coon re-
quired it to describe the energy gap of the lower 0 and 2t states,
while Ogasawara and Hiura required the description of the radius of
that nucleus. These different criteria led to potentials of very dis-

tinct characteristics as it is shown in table 2.

As the basic states are completely symmetric, for effect of
matrix elements evaluation we may take for the potential energy the ex-

pression

Voo VotV = 6(v,,(1,2) + v, (1,2)] + b, (,2,3) (3.8)

where the factors 6 and 4 account for the number of pairs and trios of

particles, respectively.

We are interested in the intrinsic hamiltonian HI which is

r VO (MeV) I8 A (fm=2)
g Portilho
, and - 7 506 x {073
[ Coon
Ogasawar a
and = 200 0.25
Hiura

Table 2 - Parameters of the 3-a potentials.
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obtained from (3.5) by subtracting the center-of-rnass kinetic energy,

namely

2

. (3.9)

Now, it is convenient to add and subtract from (3.9) the term
(Bof8) 1G22 = Aeleleiead) (3.10)
w e z mw,) o = Aulzire ) .

so that (3.9) can be expressed entirely in terms of Jacobi coordinates

as

=] 2 2 2 2 2 2
HI——Z—/‘impa+pb +pc+xa+xb+xel
- 2
+ 6|V o‘(:,t:a) + 7, (xa) (Ew/li)xa‘
+ Vh(ma"xb) . (3.11)

The first term represents the hamiltonian of 3 harmonic oscillators with

eigenvalue
¥+ 9/ , (3.12)

where N is given by (2.7).

If we represent by N the set of quantum numbers of the ba-

sic states (2.6), i.e.,

N» (nJL,n!L,nk k) , i,d,k =1, 2,3 : (3.13)
we have to evaluate the matrix elements

(N'|& |N) oV + 9/2) & +

N'N
6(N'lVaa (xa) + Vc(xa) - (ﬁm/‘i)xczli N) +
4(N’fVSa(xa,xb) [N}, (3.14)
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Essentially, we have to evaluate two types of matrix elements, namely

gt A igt 2
(nini,njzj,nkzk{p;a(xa) W (x ) - (hu/h) xafniﬁi,nJaj,nklk) ,  (3.15)

and

L niat nted .
(nz 7,’n,j J’nklk[VE,a(xa’xb)Inili’njgg’nklk ). (3.16)

To evaluate these matrix elements it is obviously convenient
to express bras and kets in Jacobi coordinates. This can be accompli-
shed by the use of the transformation (3.1) and it is easy to see that

the two-body contributions are given by

(ni!bi,ncj.l‘ ')l‘l e +V - (ﬁw/h)mzfnl nl k) =
ST B O AR ]
"Wk Kk om g G @ oo
a aaq
nL
Lt Nt g }né%é,n}l&,kk) NORIRER zk,n 4. s 25 9) (3.17)

where the summations are restrict by the properties of the Moshinsky
coefficients. The ‘'reduced' matrix elements can be expressed in terms

of Talmi Entegrals5 resglting

<n&zalivaa + 7, - (Fw/h) xé[[nala > =

na+7’l +£, )
pg"g Plongtans f) { 220 2,4 [V-’?ﬂ(}ﬂz?z/e)-p—}/z +
VAl(lmAz/e)-p%/z ] + %/-—2:% -E— (p + 3/2)} (3.18)
with
e = Au/me? € = (e2/he) (8n /m )12

(3.19)

-
w
|

- 2 - 2 2, .2
%pe,Ag = 2P Rg an (re)2/m *moe®
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tn (3.19), moc2 = 0.511 MeV is an arbitrary scale factor.
W note that the matrix elements (3.17) are invariant under
H 1 ] 1 J
the exchange of the pairs (niii) > (”gRg) and/or (nili) > (nglg) due
to symmetry properties of the Moshinsky coefficients. This fact redu-

ces drastically the number of matrix elements to be effectively evalua-
ted.

The matrix elements (3.16) are written as

1 =
(ntzl,nJRJ LA v (xa,.c (n 3 " L. 5™ k)

z ) ZQ <n R ang d,zklnizi,njxj,zk)_
, % ddnc e
f
" 1 ity ity

L4 |n,g

! 14 ! ! ! 14 12 ! H ’
x <niginablh e lnie i ag) <mpyon p oLt Ingh 28, ) g

to ! to!
x <nfafn g 0l Inhniel,al) o <nia el Vo dfnog m >, (3.20)

where the summations are restricted by properties of the several Mo-

shinsky coefficients involved.

Since we can factorize the 3-body operator as

-3 (2 +xb) .
Vay (xa,xb) =V, R = Ty f(xa)f(xb) , (3.21)

the corresponding reduced matrix elements can be written as

)8l it H ll R sty > =
~3M2 -3x22
v, <né£é” e ”n!l.> <nyis e | m8y> 8o, 844,
a’a bbb
=V, Eorg Sorg ) B(p,n;la,naia) B(q,nélb,nbib)

aa bbb pq

x (1 + 3xg/e) P43 (3.22)
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with

+ 2

L spsn'+n + .
p a a Ra and Jlbsqi b (3.23)

!
n, + g
Again, we note that the matrix elements (3.20) are invariant.
g} - L 33 L2L). i
under the exchanges (n,LSL,b) (nJZJ) and/or (nilll) > (nJRJ) In spite
of the economy this symmetry provides, the presence of generalized Mo-
shinsky coefficients requires too much cornputer time. In order to save

computer time, the following development was carried out.

Let us introduce the following orthogonal transformation

> ->
> -+ >
¥ =71/2 (y2-y3) : ‘ (3.24)
¥ =72 (Gp49s)
where _2/2 are the Kramer-Moshinsky coordinates (2.5). It is easy to see
that
2, .2.,2,2.2.,1,2_ /8> =
z rxp =y +_3 y1+3Y 3 Y .Y (3.25)
so that (3.21) reads’
- >
"3}\1/2 -A(/—Z_yl - y)?.
V3a (xa,xb) =V, e e .
=3y a2 + ¥7)
=4w Vg e e
L. .,
% gm i Jz('L/B_)\yIY)Ym(le)Y* (9 ) . (3.26)

The oscillators in the coordinates ?2 and ‘;;3 are connected
. . . > . .
with those in the coordinates y and b4 through ordinary Moshinsky trans-

formation brackets, so that we can write

[n 257 x M) = 1n %.:sn2,NL) (n8, 0L, L, [n ETHOA T ), (3.27)
IVL

where (n%) and (NL} are associated with the coordinates Z—; and ?’ res-
pectively.

174 .



Now a little Racah algebra leads us to the final expression
v . a. 2
(n’ 2t nJgJ nkgk[ (x 2% ]nl al,n] a] . )
7 - 2
I I (100%0[200) (20270[20)2" sl M7 | ma)

nt n't’ pq
NL N'L?

X

[(2£i+])(2[’ + N]V2 (2041) - (ne, 0L, 2 ]n 25, L5 8;)

x

(n'2', 00", L} ln(j’.zj,n;é%, R,,IE)‘ B(p, V'L ',NL)B(q,néké,nili)

X

tr ! . !
W(ziL 2,508 )

3 T (3/2) T (pra ' /243/2) T (gr8,'/243/2)
P (g+3/2) (p+3/2) T (1143/2) (a1)PH /24372 (55,41 3*8 /24372

X

JF ra/2e3/2 5 aR /2372 5 R3/25 D2/ 0 (1))
(3.28)

Taking into account the properties of the Clebsch-Gordan and Moshinsky
coefficients it can be shown that all the i's involved in the summa-~
tions are even. Finally, we note that (3.28) is invariant underthe ex-

changes (ngRg.) > (nklk) and/or (né%) > (n7'<21'().

The above expression (3.28) is much more complicated to write
down than theequivalent one given in (3.22). Nevertheless, its use

allowed us to reduce computer time to less than half the previous time!

The discussion of the matrix elements of the hamiltonian is

complete. in the next section, we discuss the charge form factor.
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4. THE CHARGE FORM FACTOR OF'°0

it is well kncwn that the charge form factor of the 160 nu-
cleus factorizes as the product of its body forrn factor by the alpha

particle charge form factor, i.e,
- - -+
F (@) =F,(q) £ {q) (L.1)

As we are here interested only in the effect of three-alpha forces in
the charge form factor and since the alpha-particle charge form factor
is obviously independent of the interactions between the alphas, we
shall restrict ourselves to the discussion of the 150 body form factor.
If the ground state is described by the variational function (2.1),

then the body form factor is given by5

v 3

[}
<t~

\ a* av(v'ljo(kxc)}v) {4.2)

whete v stands for the set (1,2, ,1,%,,14%5),

1/2 %

% = (38/be) (4.3)

and 8, E are defined in (3.19).

On the coefficients a were deterrnined through the variatio-
nal analysis of the hamiltonian, it rernains only to evaluate the matrix

elements that appear in (4.2). A specirnen of them is given by

(nje} i ,nf(f,zé]j (ke ){nlm1 SR b =

L +R!

- e c i i 1 1 { 1 ] i i §
z (-) <na2a,ndzd,zk{nisz,7; ML, L )

1
X <n 8o am kgt Sn Lot JLJ zk) <niion e in

5 g s %) g

x <t L, a[”dzd’"ky“k”za)a <nin! ] J, ke ) i i, >
X6 8, &, &, &,
e e T Wt tete (4.4)
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where use was made of the transformation (3.1). in {(4.4%) the summa-
tion runs over all the quantum number that do not appear in the LHS.
There ai-e 16 summations. The presence of the several Kronecker symbols

and the properties of the Moshinsky coefficients leave us with only 7

independent summations.

The expression (4.4), so easy to be written down, also con-
sumes ton much computer time. Thus, we had to find an alternative ex=
pression which does not involve generalized Moshinsky brackets. The
procedure is somewhat similar to that developed for the evaluation of

the matrix elements of the 3-body operators in last section.

From (2.8) we see that

- > > o
xc = - m (y1+y2+y3) (l}.S)

Now, using the expansion

FolalP-gl) = br z dyler)d, () 1% (22)Y, (02) (4.6)

we obtain

= Jolay,)d oy ,)dglays,)

<
3
Q
-~
1

+

) S S
br G, (ay;) iu (-) JA(Qyz)Jk&2y3)Y§u(ﬂyz)Ylu(Q;3)

hnz (), yy)d, (e0) 1 (9 )Y, (0)

Au )

=5 + 5, + 5y, : (4.7)

. > <> > . . . .
with p = y,+y3 and a = ~ k/¥3 . The prime in the summation symbol is

to mean that the term X=0 is excluded from the sum.

Once the indices 1,2 and 3 are separated in $; and S; the cor-
responding contributions can be evaluated easily after some Racah al-

gebra giving
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E, = (n ;21 ngJ nﬂ éfs {nlzi,n 2. 7 k)
=8, &, &, n 2 (ay. )i =, 2)
2fey Tate Cafey IENCNY
X (7’7 Z II (ayz) H 7’1 2 )(n7 ” jo(fxyg)H ”k’zk) (4.8)

and

.7 '

E, = (V 2 N2 ’nk2k1322n¢2 ey Qg’nkﬁk)

(22 +1) (22 +1)]1/2

% (?’L 'Q \1 J ayl H n’L'Q"I,)

2l2.
17

X

,\;240 (2341) (A02,01210) (302, 0|2/0)
(even)

i) (il 9, 6y) | nn)) (magll 3, (oys) Il g8
(k.9)

To evaluate the matrix elements of 5, we use again the trans-

formation (3.24) and some Racah algebra to get

\

5!
I

3 = (n 2! ,n j,nklkls }n R, fﬁ

it

et g .. 197708 SR LI AP P
xzo (2A+])(nz£1|lJA(ayl)llnzli) gz <n4,NL lan % 1)
(even) NL

y'L!

L'-%
X <nf 'L ,ﬁi[ﬂ.z.,nkﬂk,ﬁi)( ) .(27/020127,0) {(Z0x JL )

x | (2z+1) 2041 |M% W(re L'D500) 0'D7]] 4, (@V2y) || BE)
{4.10)

Because all Ki’ L. and lk are even, and the Gaunt coeffi-
cients (a0b0{e0) require that a+b+e = even, the A in (4.9) and (4.10)

is even.

An alternative equivalente expression for (4.4) is then gi-
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ven by E,+E,+E;. All it remains to evaluate are the reduced matrix
elements of jo. They are easily obtained through the use of Talmi in-

tegral-and are given by

(nre'l] gy lee) | me)

! 2
= ] Bt (r2)) LBDIEN8/2) 0 2 3,0, 3 8
P T (A+3/2)1(p+3/2)
h.11)
where M{a,b,z) is a Kummer function and p runs over the values
T (8748) 5 p s%(mz) +n'+n . (4.12)

Again, we obtained an expression much more complicated when
we tried to avoid the generalized Moshinsky coefficients. However, ex-

pressions (4.8) - (4.10) help us to save a lot of computer time.

5. RESULTS AND DISCUSSION

Using only the two-alpha interaction (3.6) with the parame-
ters of Table I, we found a ground-state energy of -4.8 MeV for the
180 nucleus. In this case, the numerical calculations wsre carried
out in the 10-quantum approximation what means that the variational
function (2.1) has 40 components. The above energy agrees with the one
previously obtained by Mendez-Moreno et aZ.“. The experimental value
is -14.5 MeV. So, the u-a potential alone provides cnly 30% of the

experimental value in that approximation.

Turning on the 3-a potential (3.7), we learn that the Porti-
lho-Coon potential with the parameters of Table 2 overbinds the system
early in the 6-quantum approximation, surely on account of its long
range character. On the other hand, the potential of Ogasawara-Hiure,
whose parameters are listed in Table 2, gives -4.74 MeV in the 8-quan-
tum approximation. tt must be stressed that with the help of this 3-u
force we required a subspace rnuch smaller (half the dimension) than

that required by using only 2-u potential to obtain the sanie energy.
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This is significant and gives us a clear demonstration of the effecti-

veness of the 3-a force in the 160 nucleus.

Numerical calculations up to a greater number of quanta in
the approximation - that would allow a reliable discussion on excited
states and inelastic form factor, for instance - were not carried out
because of the very expensive coaputer costs in spite of the reduction

in process time as mentioned before.

Concerning the 80 form factor, only the body form factor is
presented because we presently are interested only in verify the effect
of a 3-a force. This is shown in Fig.l. The dashed line is obtained
without the presence of a three-alpha force. When we turn this force
on we obtain the body form factor represented by the continuous line.
W see from the figure that the form factor is very insensitive to the
presence of the 3-a force for small momentum transfer Aig. A slight ef-

fect can be noted according as #g increases.

IGO

BODY FORM FACTOR

1]

i

4

10

q*(tm’)

fFig.l - Body form factar of 150 with Ali-Bodmer + Ogasawara-Hiura po-
tentials. Dashed line: 3-a force turned off. Continuous line: 3-a

force turned on,
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