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Starting with the coupled channels equations describing multi-
ple Coulomb excitations in heavy ion collisions we develop an approxima-
tion scheme based on replacing the channel Green's functions by their
on-the-energy shell forms, which permits an exact analytic solution for
the scattering matrix. W construct the trivially equivalent Coulomb po-
larization potential valid for strong coupling and small energy loss in
the excitation processes. This potential is seen to have a very simple
r-dependence. A simple formula for the sub-barrier elastic scattering
cross section is then derived both by using the WKB approximation and by
summing the Born series for the T-matrix. Comparison of the two forms
for the elastic cross section shows that they give almost identical nu-
merical results in the small coupling limit only. W also compare our

results with the predictions of the Alder-Winther theory.
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A partir das equacoes acopladaz que descrevem a&as excitagoes
mdltiplas Coulombianas em fons pesados, desenvolvemos uma aproximagao
baseada no usc da forma ''on-energy-shel!l'' das funcbes de Green dos ca-
nais, que permitem achar uma solugao analltica para a matriz ,de espa-
lhamento. Construimos o potencial local equivalente Coulombiano val ido
para acoplamento forte e pequenas energias de excitacdo. Este potencial
tem uma de~endenciaem I bastante simples. Calculamos entdo uma férmula

simples para a seccdo de choque de espalhamento elastico usando tanto a
WKB como a soma de Born. Os dois métodos (WKBe a soma de Born) ,apre-

sentam resultados quase idénticos apenas para o caso de acoplamento fra-

co. Comparamos também os resultados com a teoria Alder-Winther.

1. INTRGDUCTION

Multistep processes are the rule rather than the exception in
heavy ion collision phenomenal. To deal with these processes one has to
perform a coupled channels caiculation which becomes prohibitively cos-
tly as tne nuinber of channels increases. Several approximation schemes
have been deveioped which have in common the basic aim of reducing the
computation time. in particular, due to the short wave lengths thot
characterize these reactions, several forms of semiclassical approxima-
tions were developed and put into test recently giving overall reasona-
ble results. Of these theories we mention that developed by the Copenha-
gem group2 and the methods based on ttie work cf Miller3 developedpri-
marily by the Berkeley group*. However, the intrinsic difficulty of per-
forming a many coupled channel calculation is not completely overcome by
these methods, The Llinther-de Boer code for Coulemb excitation cari han-
dle few channels; the method developed by the Berkeley group can, in
principle, handle a larger number of coupled channels but is restricted
to cases where a classical hamiltonian function can be constructed. Most
of the numerical results given in Ref.lL were obtained for back angle
scattering in which case the resulting geometrical simplification makes
possible a speedy calculation. Extension of the methods of Ref.4 to

three dimensions is still pending®

In the present series of papers we try an alternative method

which is based on the use of the on-energy-shell form of the channel



Green's functions. Although several authors have discussed this method
in several contexts®, we believe that a study of the full consequence of
the OES approximation is called for. Moreover, this approximationsche-
me has been adopted recently? to extend the closed formalism approach
developed by Frahn® py including specific multistep processes in heavy
ion collision phenomena. An important test is a comparison of the ran-
ge of applicability of the OES approximation with the already establi-

shed results of multiple Coulomb excitation theory?

The paper is organized as follows: In Section 2 we formulate
the coupled-channels problem for multiple Coulomb excitation. In  Sec-
tion 3 we introduce the on-energy-shell approximation for the channel
Green's functions and derive an expression for the locally equivalent
Coulomb polarization potential (LECPP) in closed form. In Section 4 we
demonstrate, through numerical calculation, that the cross section for
sub-barrier elastic scattering calculated using the WKB approximation
and using the LECPP is almost identical to that calculated by summing
the Born series for the elastic amplitude without any references to the
LECPP. Discussion of our results as well as suggestions for possible

improvements and the conclusions are given in Section 5.

2. THE QUANTUM MECHAMICAL COUPLED CHANNEL
EQUATIONS FOR MULTIPLE COULOMB EXCITATION

W consider the collision of a spherical nucleus | on a defor-
med tarqget nucleus 2, at sub-barrier energies. W study the Coulomb
excitation of low-lying states IMof spin| and magnetic quantum number

M with excitation energy E,, W consider hucleus 1 as a point charge,

|
Zle. For the Total wave function in thé center of mass system we usethe

expansion?®
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where the channel wave functions are given by

| (R1)IN> = § <am IM|JN> |IM> ¥, () . (2)
am
Mm
Here J is the' total conserved channel angular momentum and N its projec=
tion in the Z-axis. The relative position of the centers of mass of 1
and 2 is denoted by I while the superindices 241, indicate the initial
condition. Inserting the wave function (1) into the time-independent

Schrb'dinger equation

(H-E)jp> =0 . (3)

we obtain a system of coupled equations for the radial wave functions
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where <I'||M(Ex)[|7> is the reduced matrix element of the electric h-
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-pole moment of the target. We shall, in the following, .consider the
specific case of a quadrupole-deformed even-even target nucleus 2. As-
suming a rotational band structure for the low-lying excited state of 2

the coupling potential matrix V I.(r) becomes
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where a; is half the distance of closest approach for head on collision

; — 2 - — — i -
in channel |, a, = 2,2,e /2(E EI), ny = leze/ﬁvI = kJaI is the Som
merfeld parameter in channel | and Ar,rr is the symmetrized dimension-
less quadrupole strength parameter for the coupling 7=’ and is defined

by
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In the limit of a pure quadrupole rotational band and zero energy loss

in the different excitation processes we have

I+I'+2
e
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Once the w(zI)J(r) are obtained from Eq. (4) the corresponding T-ma-
trices 800 T are extrasted from their asymptotic forms, i.e.,
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o_ being the Coulomb phase shift. With the TJT one can then cal-
E ZJ._,E()IO
culate the amplitudes fIOMO,,IM(B,qa) for Coulomb excitation from the

ground state |I,¥,> to the final state [IM> (in coordinate system C

of Ref. (10))
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The differential cross sections are then calculated as usual.

3. THE ON-ENERGY-SHELL APPROXIMATION
AND THE EQUI!VALENT LOCAL COULOMB
POLARIZATION POTENTIAL

In order to calculate the cross~section for inelastic Cou-
lomb scattering one has to solve Eq.(4) with the appropriate boundary
condition of an incorning wave present only in the elastic channel. For
fuller details we refer the reader to Refs. 9 and 10. 1t is important
to recognize that with an increasing number of coupled channels the so-
lution to Eq. (%) becomes more and more complicated. Four our purpo~

ses we adopt the oﬁ-energy-shell approximation for the channel Coulomb

Green's functionil

(+) 4

Gl or?) = - R (k) F () (an
T

W shall assess the accuracy of this approximation later. In the above,
Fa(kr) is the regular Coulomb function and r<(r>) corresponds to the

smaller (larger) of r and r'.

The solution of Eq. (4) may be written as an integral, e-

quation
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We now use the approximation (11) in (12) and obtain
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Multiplying (12) by ,rL-El—FSL,,(kI,,r) and integrating over I we obtain
"

the following relation
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where we have defined the coefficients
1 ) ny '
r 0
and the in integrals Il"z(kI"’kT) are the usual Coulomb excitation in-
tegrals®
]
Ly g = [ e £y L) (16)
Eq. (14) can easily be solved for Zy,., @y pyry Moy = Y,
, -1 1
vy = (h+2¢ Qg I (k,,k.) (17)
oI ZZ,I, Leidg ., K, h1200 TRTE, 270

where we have introduced the coupling matrix C whose matrix elements

are given by

¢ I (kI k) (18)

1
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The matrix (1 + ig)-1 acts in the full channel space.

Since a corresponds to the coupling of the e-

271240 Iz'mo

lastic channel to the 2+ channel (due to the quadrupole nature of the

coupling only the 2+ can couple directly to the 0 ) the values &' are

completely determined by the 3-j symbols that appear in @yrog g7 i.e.,
0

Lo 2' 2

(0 0 0)'

Therefore, L' can be 2y, Ly + 2 o0r 20 - 2. This sayr that
-1
Eq. (17) may be rewritten as (labeling the matrix elements of [l+ _C_‘]

by the intrinsic spin only)
!
vo=[Lezcl ], 6 (19)

The vector Y contains I+1 components (R and M must always add to J=£n).
Therefore, the matrix [l+ .C]_l is a (I+1) x 3 matrix. Once Y, s
evaluated, the wave function lJJM.(r), which is also a vector with | + 1
components, is then obtained from Eq. (13) vis

Vanyn, @) = Fy g7 Opg Oy ¥ (0 Fy(kp) (1 2 87 S0 (20)
Eg. (20) can be used to calculate the trivially equivalent local Cou-
lomb polarization potential in the elastic channel as was done .in Refs.
11 and 12. Inserting the second termof Eg. (20) in the r.h.s. of Eq.
(4) for w(zoo)zo(r)v\e immediately obtain for the sum

JLO SZ,OO
Z Vg OQ,IIy(P) w(ﬂ,’I’)l {r)
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I . ) o
= = V7 ¢ % 21
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= M
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or
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where F(%;r) is a 3-component vector given by

» ; [F£0+2(k2r) Fgo(kzr')
Fl4;r = ————aqa y —— a
02 F, (k p)p3 %001%*%02 7 f (k. r)r3 200,102
0 0 1L0 0
(23)
F, plk,2)
F (k I’)I‘s 9.00,2.0'2,2
9,0 0

Eq. (22) describes the effect of the coupling of the elastic channel to
all other inelastic channels. It is a simple realization of the Fesh-

bach theory for the optical potentiall3, Denoting the projection ope-
rator that projects out the elastic channel of the full wave function
by P and the complementary operator ¢ = I-P which projects out all
inelastic: channels, we can write Egq. {23) as
. -1
Vopt = Vgl * ¢ Cl Vap (24)
Therefore, the rnatrix [l_ +i QQQT-l is effectively the g-space propa-

gator.

In our particular case of multiple Coulomb excitation
through the quadrupole coupling, VQP is just V20 as only the 2 channel
is coupled directly to the elastic, 0+, channel. Within the g-space
the 2+ channel couples directly only to the h+. The 4% then couplesto

+ . .
the 6  state and so on. This suggests that the structure of the matrix

D_ + iCQQ-]-l is

c.1l=0l1+4¢c +¢C 1+ 1 "l o]t 2
—«:szzz Lot L, T, [1 v %2 g2 uu—uz] (25)

[l + 7
where the symbol ¢-2 refers to the subspace spanned by states in the

Q-space except the 2 . Eq. (25) can easily be derived by expandingthe
matrix propagator in ¢ and inserting whenever calculating productsof

C's, i.e.,
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Rearranying and summing the series (26) we obtain (25). It should be

emphasized that once the matrix propagators is decomposed into propa-
gation in smaller subspace as given in (25) the calculation of Vopt
becoaes quite simple. Realizing that Cﬂ;(.7 is an (Z+1)x{(j+1) mactrix (in
magnetic quantum number space) such a calculaticn can then be easily
made by inverting the matrix propagator as was done in Ref.'4. In par-
ticular if all coupling except the CZO were made equal to zero we ob-~

tain the potential considered in Refs. 12 ard 15

(2)

Vopt (1) = - i—a- (#(257) 5,00 (2) (27)

in the following we assume zero energy loss in the different excitation

processes (kI = kg). W aisc utilize the simple relations,valid for lar-

ge 1, among Fz(kr), F“z(kr) and Fl_z(kr) obtained in Refs. 1] and 12,

Fag ) I T ST S A R Fyog thr) (28)
Fl(kr) 92 n2 kr k2p2 Fl(kr)

Finally, we shall use the large R values of the 3-j and 6-j symbols nee-

ded in the calculation ana given in Appendix !. With the above approxi-

. . . 2
mations and assumptions the expression for chpi

to the form derived in Refs. 12 and 15.

14
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where we have introduced the quantity T &LTII'LZ and have used the ex-
plicit forms of the Coulomb integrals Izz'(k1=k0) as given in Ref. 9,
2
n 1 ] i .
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We correctecl for the kT= kD approximation by inserting the semiclassical

energy loss factors gT_J,(F= ), for the process »I', 16 where ¢ ro 1"

I>I'
is thc adiabaticity parameter, which is given by

B : i b R
£ zaq.,-n_=n./E - | = —n, ——— (32)
I 1! T |\ [(E_E_,Z_,)]/Z (E_EI)I/z', 2 0 i

where n, and E are, respectively, the Sommerfeld parameter and the center
of mass energy in the elastic channel. EI is the excitation energyof sta-
te I . Numerical values of gI—>I’(€I+I’) are given in Ref. 16. It is easi-
ly seen that the simple r-dependence of the potential given in (29) also
holds for ths more exact potential of Eg. (22) if the same assumptionsand

11

approximations are made, i.e.,

Q
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o e
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opt ; (33)
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3

This is clear since the r-dependence of Vopt(r) is contained only in the
vector F(r;8). The propagator []_ + ig(l)]'l, which is the quantity used
to get approximate forms for Vopt(r), does not depend on r. in Eg. (33)
the complex coefficients, ag, D£ and , depend on the orbital angular mo-
mentum, i, the Sommerfeld parameter, n , the center of mass energy, E
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and the quadrupole coupling strength qij' In Ref. 15 the potential Vopt(r)
was derived using the semiclassical theory of Coulomb excitation develo-
ped by Alder and Winther?. The r- and r-dependence of Vopt(r) of Eg. (33)
and that of Ref. 15 are quite different. One advantage of Vopt(r) of EQq.
(33) is its simple r-dependence as well as the explicit L-dependente which
can be obtained by inverting the matrix (1+2£(%)) in Eq. (22). Ve shall
give below the result for the case of the coupling of the 0 channel to
the 2+ channel including the reorientation of the 2+ to all orders. Ve
shall also present the result when including the coupling to the 4+ chan-
nel. iIn order to perform these calculations we first rewrite Eq. (25) in

the equivalent, but more transparent form

Ciwic@]) = 01 wdc, @ + 6,001 +140,,(0)

7l -1
+e w LIT ¢ ]

(34)

In the above each coupling matrix E’L'j#i(ﬁ') contains an appropriate energy

loss factor »/g%(gii) whereas the reorientation matrices C,,(2) do not.
. ~L7

Therefore, the Coulomb polarization potential for the two channel case

with reorientation is given by

(2)Reor.

. 2 -
Tpr ) =5 &) Fsn)y, [1eig,wl” ¢ (35)

The matrix 222(2) has the form

{(oz g 0 }
Cs5(8) =%q2_)2 1 8 -a BJ (36)
0 B o

where we have defined

37
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Since gzz(l) is symmetric and real we could immediately invert the propa-
gator and write down the expressions for the real and imaginary part of

V(z)Reor utilizing the form for C,, (E)
} (38)

opt

% © = (6 0,)
2 /5 1952 9025022

mdw

(2)Reor __ 4 F 2 a, 3
Re V (r) = 35 ('n—) 152 9959 (;) 902(50_>2)

N2 -1
I [1 - arctanRJ + I 1
I N 3 (1422)2

-
- 2/2)2 - /0 22 -
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———
=

- - - 2
o 22 (22 +1)

_ 1 -8 (1-arctan /%) a
3(2241)2 (2+1)2 °

- - -

-~ 24 (1~arctan 2/%) a2
(22 +1)2 (f')

(39)

and

V(Z)Reor L s 1 P
o r) = |1 +14—9'q2—>2 ;q— (1-arctan %/%)

opt
-1
o]
SRR 4o
N (E2+1)2h v () “o

(2)

where V!a (r) is given in Eq. (29). Eq. (40) is the potential given in
Refs. 11 and 14. 1t is interesting to notice that Re VéilReor(r) becomes

indentically zero when Dpyp = 0, i.e., no reorientation effect. As a mat-
ter of fact this result is more general, Re Vopt(r): 0 when all reorien-
tation couplings vanish, A7 = 0, as can be seen from Eq. (34) and (22).
The above observation sheds some light on the results of Ref. 17  where

Vopt(r) was calculated assuming a harmonic vibrational spectrum for the
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target nucleus (all g.: = 0) and it was found that V, r) is purely ima-
i opt (1) purely

ginary.

Including the coupling to the 4+ state to all orders re-

sults in a potential Vg(h)(ya) which has the formt*

v W) = - e ! c
l-n'g_zz(ﬁl) + g_zq(z)ng(!@)

3.2 2, Y5 ok "
*"*EQN. Gy (Egu) % + 5) 17q2+2a_—}.

_ 6' 2 : yz

2

-2
2ap -2

. 2
7 =
Tty

36

2 Y23
x(1+ == q2_>4 924(524) (@2 + '3—))

l‘f 2 2
+ — g {a
49 22

2
+I_-7,'}8

3 15x49

2 -1
q2—>l§g2'>l§ (524>q2_>2 (Yz'a 2)11}
(1)

where f(r) is given by

-
2 - a =
rlr) = — 1+ 222 (;) + g (2;-)2_]

and v = /6. Eq. (41) reduces to (39) and (40) in the limit Gy = O It
isclear thatonecouldcalculateexplicitly Vopt(r) towhatever order de-
sired. However, such expressions become more and more complicated as al~-

ready indicated in Eq. (41). Instead one could simply invert the matrix
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propagator numerically in conrjunction with optical model calculations. in

Fig. 1 we show the coefficients ags bk and e, as function of £ for the

different cases studied above as well as for that including the excitation
+ . R

of up to the | = 16 state. It is clear from Fig. i that the imaginary

part of Vop‘r(r) ,determined by Re a,, Re bl and Re ¢, behaves basically

g"
like »73 for small values of & whereac for large values of £ it goes as
p~5. This fact seems to hold irrespective of the value of the quadrupole
coupiing strength g. The above result continues to hold when the energy

loss is properly included by use of the semiclassical energy loss factors

g I | 1 1 i H 1 1 1
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S D
- - . . s 2+1/2
Fig.l The coefficienr 2y, b!c and c, plotted as functions of 2=+-
for several values of the quadrupole coupling paramecer q. A factor ;'—:

was taken out of the coefficientsin order to present the result in as
generai a forrn as possible.
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as discussed before. The real part of Vv (r) shows a similar behavior to
o -

Im Vopt(r) namely it goes as » 3 for small £ and as »° for large %. For

intermediate values of & both the real and the imaginary parts of Vopt(r)

show the general r-dependence of Eq. (33). The g-dependence of Vopt is
shown in Fig.2 . The coefficient a , bf, and CR have a rather smooth de-
pendence on q. Notice that for % = 0 the coefficients bE:n and ¢3_, are

identically zero for all . This coordinates the discussion above about
the r-dependence of Vopt(r)' It is instructive to compare our results for
Vopt(r) with the potential derived in Ref.15 where the semiclassical theo-

ry of multiple Coulomb excitation has been used. From the closed expres-

Re b;

125 = &-sr 1
100 ‘—E< sr —_— 1100 1
75 T - 3:10 .
. — B e 1:20 oo d
50 | - o
28 =T ‘9L |
P DO e o . R . 10 | | L A : ) L
° i 2 3 P s 6 7 8 0 ! 2 3 4 s & i 8
q q

Fig.2 - The coefficient @y, bz and ¢, plotted as Fun;tions of the gquadru=~

- + n
pole coupling parameter g for several values of Ly N . A factor 7
was taken out of the coefficients{see caption to Fig.1).



sion for the elastic amplitude for 2=0 and £=0 (assuming a pure rotatio-
nal band) obtained by Alder and Winther?, one can extract the Vopt(r) fol-

lowing the method developed in Ref.15.

5,(2q)
Re Vﬁzo(r) =-3= %q-arctan 2 =)
Cy(2q)

Sy

im ¥ (»)

2=0

-3

n [/{’; (e, 2q)]2 +[5, (ZqDZ}] &’

where C and S are the Fresnel integralsg.

We have compared our potentials of Eq. (22) with that of
Alder and Winther given in (42) and the results are shown in Fig. 2 where
we have plotted VJL:O as a function of the quadrupole strength parameter
dgp- It is clear that our potential is ~50% smaller than VAW. More impor-
tantly we do not reproduce the broad oscillations seen in Im V'%\:_O(r). One
possible reason for the disagreement can certainly be tracked down to a
shortcoming of the on-energy-shell approximation. Another possibility is
the fact the potential given in (42) is extracted from the elastic ampli-
tude, an asymptotic quantity, and therefore is a phase- shift equivalent
potential whereas our potential is a wave function equivalent potential
being obtained directly from the wave function. W shall address oursel-
ves here to the question of the on-shell approximation and itslimitations.
Implicit in our calculation is the neglect of all terms involving the ir-
regular Coulomb solution Gg(kr). If we were to calculate the potential to
first order, as was done in Ref. 12 such an approximation is all right
since 1t amounts to neglecting terms of the type (assuming zero energy

loss)

JFR(kr) L6, (ke) dr (43)
r

with R" =R * 2, R-2, 9. It is clear that for large ri, the Sommerfeld pa-
rameters, F,; and Gz oscillate out of phase and therefore the above term

may be neglected as compared to the dominant term fFZ(kr) L Fl,(kz’) dr .

3

r
It would seem reasonable to adopt the above approximation, i.e., neglect
all integrals involving FJL and Gl even in the calculation of higher order
terms in the potential. However, upon an inspection of our series (12},
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one notices immediately that terms like f GJL ;13— Gg start appearing andone
certainiy cannot neglect them as they could be as important as the terrns
involving pairs of Fl‘s. Short of actually taking full account of these
terms we, instead, attached one parameter, a, to all the reorientation
matrices Efii(&) and another one, to all the coupling matrices CiJ(JL) in
our expression for Vopt(r) and adjusted these two parameters to obtain a
best fit to the Alder-Winther potential of Eq. (42). Our results are
shown in Fig. 3. The final adjusted values of a and 8 are 2.23 and 4.46,
respectiveiy. it is clearly seen that the real part can be nicely fitted,
the imaginary part, however, fits only on the average without exhibiting
any oscillations. The fact that the parameters a and # which fit the ave-
rage behavior of VAW come out to be greater than unity is an indication
that the neglected terms if included, would tend to enhance the matrix e-

lements C..(2) and C..(%).
11 1

4. THE SUB-BARRIER ELASTIC CROSS SECTION

Once the optical potential is obtained one may then calcu-
late the sub-barrier elastic scattering cross section either from an
exact, one-channel, optical model calculation or simply by using the
WKB approximation. Due to the fact that the number of partial waves
involved in the heavy ion reactions we are considering is quite iarge,
one may use the usual argurnents of replacing the partial wave sum in
the elastic amplitude by an integral and perforrn the integration using
the stationary phase method. Insofar as the real part of Vopt(r) of
Eq. {22} is quite small as compared with the dominant monopole-monopo-
le Coulornb potential one may then use the Coulomb deflection function

2+1/2 to the c.m. scattering angle 8,

to relate 2 =
2 = cot 2 (b4k)
- Z

A numerical calculation was reported in Ref. 14 where the Véé)tReor(r)
corresponding to two channel coupling with reorientation was incorpo-
rated into an optical model code. The deflection function extracted
from the resulting phase shifts was found tc be very clcse to a pure

Rutherford deflection function, Eq. (44). This gives us confidence in
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Fig.3 = The potential Vi=0 plotted as a function of q and adjusted to the

Alder-Winther potential {dashed 1ine}. The adjusted values of the parame-
ters a and B used to fit the potential to the AW potential wave 2.3 and

4.6, respectively (see text).
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using the WKB formula for o given in Refs.2 and 18, which adapted

eR
to our case, becomes

o Im ¥ ()
—ﬁ(e) =exp |- 2 2 —_opt”" g (L5)
OR 52 k-

rt(g(e)) g{0)

where Z is given by Eq. (44), and

2 _ 5 1/2
) = Bea -2 L2 (46)
EZ 1’2 r

and r,.(s-L) is the classical turning point determined by the larger root
of
of kﬁ(r) = 0. From the general r-dependence of our potential given in

Eq. (33), Eq. (45) may be rewritten in the form

]
o
£ — _ -
o (8) = epr -LRe az(g) T3(8) + Re byg) Tule) + Re cp oy 15(8):)
(47)
where
[(X)
(o) =2 (.2.2_} J — (48)
L @ 0 g @)
and Re as , etc. are functions only of the center of mass angle, the

2(9)
quadrupole strength parameters qij and the energy loss faCtorSQij(gij)‘

The integrals (48) can be evaluated in closed form and the final ex-

pressions for ¢ = 3, 4 and 5 are collected in Appendix 2.

The above formula for o )/oR was used in Refs. 11 and

(6
el
12 to calculate the Coulomb damping in the elastic channel. In Ref.
12 the Coulomb orbit integrals of Eq. (48) were evaluated in a sligh=
tly different way from our expressions given in Appendix 2 but compa-

rison of our expression for g—e&(e) with the V t(r) given in Eg.(29),

. (2) ) R ) ) opt :

i.e., VJL (r) and with the Ii(e) given in Appendix 2 and their expres-

sion (Eq. (9), Ref.l2) indicate that they are practically identical. In
(2)Reor

Ref.11 the potential Im V (r) given in Eq.(40), was used in

opt
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Uel(e)/gl? and the expression found was (assuming only target excita-

tion)
s 16, 4 1
— ) = - 2 -
S0 = e[~ 5 a2, 20, (60, (1 + gy a2, £, @] 9
where
(0) =[(1 - (528) tan 92 tan® &+ Lgint 2]
£, 5 5 an' x + g sin ZJ
and f(8) is the universal angle function given in Ref. 11, Again the

comparison of Eg. (49) with the corresponding expression obtained from
Eq.(47) and using the Ii 's given in Appendix 2 indicate that they give
almost identical results. When performing calculations with the gene-
ral potential of Eq.(35), Eq.(47) for gﬂ*(e) ismoreappropriate. In
Fig.4 we present the results for the system 20Ne + 1525y at By p =70
MeV. The agreement with the data (from Ref. 19) is quite good. In Fig.

o
5 we present the results for —2% (8) for two values of q (assuming a

pure quaclrupole rotational band) fixing the potential Vopt so that
the maximum | included satisfies the inequality
T T T T 1 I T
1.0} fO—p 7
~~ 20 152
o Ne +¢Sm
\ﬁ
O8~ \‘é' Eldb =70 MéV -
R
06}- \:} .
5 AN
~ N
@ —
& oaf- ? ;
~—— |
0.2+ ~——

-~ | | ] ! | 1 | 1
U0° 20° 40° 60’ 80° 100° 120° 140° 1600 180°

G,

Fig.4 = The sub-barrier elastic cross section normalized to the Ruther-

ford cross section, plotted wvs. the center of mass angle for the system
20Ng + 152gp (Elab = 70 MeV}. included in the calculation is the coupling
to the 2% state as well as the reorientation of the 2% to all orders in

both target and projectile. The data are from Ref. 19.
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Fig.5 - The ratio Eﬂ calculated both from the WKB expression Eq. (47)
{solid lines} as well as from the summed Born series Eq.(52) (dashed li-
nes). a) ¢ = 2,36; b) ¢ = 9.56. Energy loss was accounted for by inser-

ting the appropriate semiclassical energy loss factors (see text).
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max 2 24 (50)
The above inequality guarantees, for a given value of g, the presence
of the effects of the coupling to all channeis included in the cons-
truction of Vopt(r)' This follows from the classical relation between

the value of g and the maximum angular momentum transferred namelyg,
2q = <I> (51)
Another way of calculating the elastic scattering cross

section is by summing of the Born series for the elastic scattering

amplitude obtained directly from Eg. (4) upon replacing the right hsnd

side by VOpt(r) ¥ (r). This results in the following simple expres-
sion for %e?i(e)
I A, _ 2
5 {1 % JO Fl(e)(kr)vopt(r) Fn(e)(kr) dr
2% (o) = =14 ()]
°R i (" 00
| +7?J FE(e)(kr)Vopt(r) Fz(e)(kr) dr )
0
(52)

Here we have adopted the on-energy-shell approximation for the elastic
channel Green's function. The amplitude 4gq(l?) may be written in terms
of the coupling matrices Eij(g) as can be seen from the structure of

Vopt given in Eq. (22) and the definition of _C_‘(LJ(JL) given in Eq. (18)

1 -4 ¢ _(2) <2 - 2 ¢,, (1)
Ve 1+20(2)
A, (2) = - (53)
1+2C (2) <2 ] 2> QZO(R)
0z 1+<¢C(1)
where the g-space 'propagator'' of the 2+ state <2 [W’C(Mi 2> s

given in Eqg. (25).

G n
We have evaluated O‘J(e) as given in Eq. (52) including in

the construction of the 2+ propggator states up to | =18, i.e., in-
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cluding up to 8 members of the rotational band and taking 4y to be
2.36 and 9.56. The result is shown as the dashed lines in Fig. 5. It
is clear that the WKB expression for Gez/OR given in Eq. (47) and the
summed Born series of Eq. (52) give almost identical resulf for small
values of q. However, for large q the two expressions, although give
close results at small angles, presents qualitatively different beha-
vior as can be seen in Fig. 5b. W have accounted for the energy loss

by inserting the factors g..(€..) in the coupling matrices C, The

i3 id 1j#L’

semiclassical coupled channels-calculation of q/oR for the above sys-

tem has been reported recently and it shows that O/OR oscillates
slightly at angles larger than 60°.

Finally, we give below the elastic scattering cross sec-

tion evaluated at & = r (included in this calculation are the couplings

to the 2+ and 4+ states as well as the reorientation of the 2+ state)

o (m)
ef = e _ 16 2 ( )
o1 eXp 75 992 Tpr2 \5pp

I+ 0.065 q2, Iy o)

X

0.036 ¢2, + [1 + 0.065 g2, g,., (5, )P (56)

It is interesting to note that at back angles both the WB and the sum-
med Born series expressions for Sﬁ (8) become, for a pure rotational
band and in the zero-energy loss limit, a function of only one varia-
ble, the quadrupole strength parameter q0+2 . This is also the casewith
the elastic scattering probability calculated by Alder and Winther?

without resorting to the Coulomb polarization potential.

From the elastic scattering cross section one may calcula-
te the total inelastic scattering cross section using the unitariry

condition which the matrix must satisfy.

0. (8) o.+(6) g (8)
net o S - 2 (55)
oﬁ(e) =24, ... oﬁ(e) oR(e)
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In order to exhibit this property of the S-matrix we notice that a ma-
nifestly unitary S-matrix may be constructed from our equation (20)

through?!

5= ()*/2 Fx)~1/2 (56)
where § is obtained from Eq. (20),
F=1 - 2:k71 Jm i 7o (57a)
0

+ , . . .
where F and ¢ are matrices in channel space and V is the coupling ma-
trix. From the unitary S-matrix above we can determine the T-matrix

which is related to § by

1 -2¢7T =8
or

7= kY2 17§ pyy (V2

(57b)
V2 ey Y2
Defining a new coupling matrix ¢’ to be
¢ = kM2 gTlp V2 J m1/2p 4 m1/2
we finally obtain
-1/2 -1/2
e kY ¢!
T= = — (58)
I N S WL
and
-1y2 _1/2
I S A A T
g = — = -
IR A E S AR I

In the above symmetrized form, T may be used to calculatethedifferent
inelastic cross sections. This calculation is reported in the follo-

wing paperzz.
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5. DISCUSSION AND CONCLUSIBMS

In this paper we have explored the consequences of the on-ener=~
gy-shell approximation for the channel Green's function on the multiple
Coulomb excitation coupled channel problem. We have, among other things,
derived a closed expression for the Coulomb polarization potential in
the limit of zero energy loss accounting partially for the last through
the semiclassical energy ioss factors. Our general expression for the
Coulomb polarization potential reduces to the more approximate expres-
sions given in Refs.11 and 12 as jimiting cases. As a check on our re-
sults we have compared our potential for R=0 with the potential based on
the Alder-Winther theory, obtained in Ref.15. The discrepancy found is
accounted for partly by the terrns in the Born series neglected in the
on-energy-shell approximation. We have been able to fit, on the avera-
ge, our potential to the Alder-Winther one by adjusting two parameters-
-one attached to the reorientations matrices and the other to the cou-
pling matrices, It is argued that the failure of our adjusted imaginary
potential to reproduce the oscillations found in the Alder-Winther po-
tential could be a consequence of both the fact that the AV potential
was extracted from the asymptotic elastic amplitude whereas ours direc-
tly from the wave function, as well as the on-energy-shell approximation.
Although the rnethods develcped in this paper are not meant to substitu-
te for more exact cuupled channels calculations, they do, nevertheless,
supply us with a very simple closed form for the sub- barrier elastic
cross section appropriate for the case of strong coupling. Furthermore,
having obtained the elastic channel Coulomb polarization petential, which
contains multiple Coulomb excitation effects, one could use it to sim-
plify an otherwise more complicated coupled channels calculation. As an
example, we cite the case of sub-barrier fusion of deformed nuclei 23 As
is known, deformation of the target induces both static as well as dy-
namic effects on the fusion cross section 2%.|f the target is so defor-
med that multiple Coulomb excitations is important, one needs to per-
form a calculation involving several strongly coupled channels to ac-
count correctly for these effects. Our potential Vopt(l’),makes it pos-
sible to account aimost completely fer the dynamic effects in a one~
~-channel opticai model description. The study cf static effects is thus

made easier and could be handled focliowing, for example, the ideas in
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Ref.23. Aside from the above practical aspects of our results we con-
sider our findings as a first step in the direction of exploring sim-
plifying schemes for the coupled channels calculation in tne more gene-
ral case where the nuclear force is included. In such cases the on-
-energy-shell approxfmation arnounts to replacing the channel Green's

function by (Ref.7) “

»)/s0 (k) (59)

G, (e,r') «yp  (») 0ot

2,c %,c wﬂ,,c
Here \pl(r) is the regular solution of the optical rnodel Schrd8dinger
equation describing the elastic scattering in channel ¢ and Sg,e(k) is
the elastic S~matrix element in channel c. Due to strong absorption
for low % partial waves the factor (S’?,c(k))'1 could become quite lar-
ge for sniali L, resulting in a pnssible overestimation of the coupled
channel effects®. However, as demonstrated in Ref.7, this needs not be
a worrying point if the amplitudes were to be evaluated in closed form
as anotheir factor of Sg(k), which comes from the distorted waves, appro=
ximately cancels the dangerous [Sg,c(k)j-l factor in the channel Green's
function. Finally, the inclusion of the nuclear excitation into our ex-
pressions for the inelastic amplitudes, which are calculated withoutthe
nuclear effects in the following paper, would make the investigation of
the dependence of the nuclear-Coulomb interference effects on the spins

25 simple and transparent. These ideas will be

explored and developed fully in the third part of this. series?6,

of the excited states

We were fortunate to have A.J. Baltz collaborate with us on

some aspects of the present work.

APPENDIX 1
In this appendix are given the approximate, large & limit,

values of the 3-j and 6-] symbols needed in the calculation. Throughout

we shall use the definitions and convention of Edmonds27.
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a) 3-j syrnbols

(Q L2 _ (_)SL+1 r 2 (2+1) 11/2
o 0 0] [(22 - J
{ +3}{22+1) (28-1)
241
. ) " (A1-1)
V81
{242 2)

1/2
f _ (_)1 3 (2+2) (2+1) J
00 0 2 (2045) (2043) (2241)

= () 3 (A1-2)

b} 6-] symbols

in the following 2 >>1, R > m

S1/2

b ! L L (mr-3) (meI-2) (neI-1) (m+I) J
2 I-2 i#m-2 2% (27-3) (21-2) (21-1) (21) (21+1)

(A1-3)

/
Lot I3 (nar-1) () (Tomo1) (Tom) 1
2 I-2 fi4m L (2r-3) (21-2) (21-1) (21+1) (21)

(A1-4)

1/2
(0 gom I } [_1_ (1-m=3) (T=m~2) (T-m-1) (I=m) }/ (A1-5)
- 2%

i 2 I-2 9+m+2 (27-3) (21-2) (21~1 ) (21) (21+1)

(27-1) (27) (21+1) (27+2) (21+3)

1/2
Pt L |3 (mr)) (med) (Tomed) (T-mt2) }/ (A1-6)
2 I +m+2 .
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{’l v I (3n? = 1(z+1))
2 I gm f [ﬁI(ZI—I)(21+1)(21+2)(2143)]1/2

APPENDIX 2

The Coulomb orbit integrals defined in Eq.

evaluated following the methods described in Ref. 28.

I3(6), I“(e) and Is(e), the following expressions

13(6) =:l_ | - arcEan‘JL 2n
22 % Eq®

2 0 - a-8 2 2y
tan® 3 [l (—T\") tan 2—’
|

Eq3
_ 52 1 = 2n
1. (68) = — [(J_l +3) — arctan £ - 3| =
i o L
28 a Ea
- a8, 28 -8 e _ ]2
= 2 tan 7 L(COt 5 + 3)('—2—) tan 3 3 E_a‘*

I.(8) =L [(l'—i—i+ 5) - (322 + 5) l_arctan }‘]
' 276 L3 2

=8
2

2tan® o [(% cot? —"2- +5)-(3 cot? 2 + 5)

Ytan

(A1-7)

(45) are easily
We obtain for

(p2-1)

(A2-2)

(A2-3)

In obtaining the final angular dependence of I7.(e) we have used the Ru-

therford & = cot % (Eq. (41)).
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