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We make an attempt to explain the A-singularity in the speci-
fic heat of the superfluid He* in terms of an order-disorder transition.
We assume that the superfluid phase of Helium exhibit an off- diagonal

long-range order.

Tenta-se explicar a singularidade A no calor especifico do He"
superfluido em termos de uma transi¢cdo ordem-desordem. Supde-se que a
fase superfluida do Helio exiba uma ordem de longo alcance fora da dia-

gonal .

For low temperatures (T < 0.6 K) it is expected that all the
thermal energy is associated with the excitation of longitudinal pho-
nonsl. In this case, the de Broglie wavelength £ is bigger than the

mean intermolecular separation a.

As the temperature rises, local atomic motions become relati-
vely more irnportant than the collective excitations: & decreases so
that £ £ a. Let us call E the energy levels that an atom can assume in

these local vibrations: En =0 for n =0 and En =€ +en for n =1,2...,

with g, = 0. In our mean field approximation €, is gn adjustable para-
meter and is the rninimum value of energy that a particle can have in
local motions: for this value of energy £ ~ a. We have found that a* =
= eG/kT = 2.6, where T)\ = 219 K is the temperature of the A-point and

k is the Boltzmann constant.
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Due to the weak interaction of the Heliun atoms, we must ex-

pect that the energy spectrum e is close to the free particle spectrum.

Since we are not able, up to the present moment, to incorpo-
rate in a consistent scheme both phonon excitations and individual ato-
mic motion, we take an additive superposition of the two contributions.
The phonon energy can be easily obtained and is given, for instance, by

Londonl.

Let us now calculate the contribution of the individual atomic
motion. If N is the total number of Helium atoms we have, using the Bo-

se-Einstein statistics and the fact that the spectrum €, is quasi-con-

tinuum (e%] - e, << k) -
Bo= ity * Vo = a—]~ kT ,{ : aiiii;ig) ()
e -1 o wle,t) e -1
where ¥, = 1/7¢%-1 is the number of particles in the ground state, a' =

=a+ gq/kT, and 1/v{e,7) is the number of states in the interval de of
energy at a temperature T. We assume that the energy spectrum E, chan-
ges with the ternperature. The function l/w(e,T) increases, since the
energy spectrum En tends to an energy spectrum of free particles, when

T increases.

1%

If the particles were free, 1/¢ would be proportional to E
and if they were vibrating harmonically about a center of equilibrium,
1/¢ would be equal to 1/&v, where v is the fundamental frequency of

vibration. Thus /¢ would be independent of E.

It seems reasonable to expect that 1/¢y « ed where § is closer
to 1/2 than to 0. As we will see in what follows this dependence of
1/ with 56 © < 0 < 1/2) is not important for T < T)\. Thus we put sim-
ply 1/v(e,T) = 2/Vw el/z/w(T). In this case, the number of excited par-

ticles Nexc given inequation (1) becomes ! :

¥ - _2 (k7) 32 ro xl/zdm - (x7) 3/2 ( EO) (2)
EXC () o & oy 32
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As we will see, the choice of § = 1/2 is important for T ;T)\. For T>T,,
the condition N = N must be satisfied.
exc
The total energy U is given by:
1
/2 de F5/2(a+90/7<T)

2 ‘ Jw (€+€0)€ 3
U= = =0 2 kT +e

—

/i o (7) ea“ + e/kT _ exc | 2 Fg/z(a-fso/FT) 0

(3)

Our problem now is to obtain ${7). As pointed out by Liu and

Fisher? it is reasonably well established that the usual superfluid pha-
se of Helium, liquid He 11, possesses an off-diagonal long-range order
(ODLRO), while the normally observed solid phase of Helium displays
crystalline order3~?. To date no theory has been proposed to take in-
to account both the long-range order in crystal and superfluid phases.
In the absence of a complete theory Mullin? and Liu and FisherZ have
adopted the lattice gas model to describe a Bose system which has three
possible phases: "normal” crystal with crystalline order, superfluid li-
quid with ODIRO and a third phase, having both crystalline order and
ODLRO which was named ''supersolid'. In the phase diagram of He* the
supersolid phase may appear between the usual solid and superfluid pha-

ses?,

The lattice gas was originally introduced by Matsubara and
Matsudal® as a model for studying tha lambda transition in liquid He-

Tium.

Despite the artificiality in many respects of the lattice mo-
del it seems to describe the essential features of the superfluid and

crystal phases.

If the pressure is maintained constant the long range order
of the superfluid decreases as the temperature increases. According to
the lattice theory it seems reasonable to assume that the order para-

meter, that we call X, obeys the equation X = tanh(T,/T X) .

We must expect that the energy spectrum En is the free parti-
ele spectrum when the system is completely disordered (X =0 at T=T)‘) .

So ¥(7) must decrease when X decreases. Let us assume that ¢ () =
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=n.(1 + gXe) where the parameter n is determined using the condition

Nexc(TA) =N and 8 and & are adjustable parameters.

Now substituting ¢(2) = n.(1 + £x°) in formulas (2) and (3)

we obtain the specific heat per unit of mass C\; for T < T)\, which is
given by:
3/2 T T.32 T
- K {T] ] 15 A 2( x] X
C. == |z —_— + 3a* +a*s i expfa*|i = ==
vom (T, (1+21%) T i T i
1/ 3 !
2 * 2
+ Z—Q egxe &4- : ] exp(oc* [1 - ﬁ]
2 . e
cosh [T X] 7
For T 2 T, the specific heat per unit of mass ¢ s given by ¢t = 3k
S A v v 2 m’

which is the specific heat of an ideal gas.

We see in the figure the theoretical results compared with the
experimental results of Keesom and Clusius and Keesom and Keesom! (the
phonons contribution, which is very small compared with C; and C\j , has
been also taken into account). The best agreement with the experimental
results was found putting & = 0.22, a* = 2.60 and & = 8.0, Our results
for CV— diverges as (TA - 7)=0.89 at the A - point and experimentally it
seems to diverge as a loq|? - TA|. A better agreement at TA could be ob-

tained by allowing ¢(T) to be a more appropriate function of X,

- + _
To obtain Cv and C'v , we have substituted F,,, (eo/kT) and
Fl/z(eo/kT) by exp(- €,/kT) since eo/kT > 2.6. The functions (y)
(0 3 1/2) can be approximate by exp(-y) fory o 2.0 with an error

of only a few percent. For this reason, our result for Cv is only
slightly modified if we put 6 = 0 in the function 1/y(e,T) « 56 and the
agreement with the experimental results is the same as that obtained abo-

ve with 6§ = 1/2,

On the other hand for 6 =0, C; =k/m which is the specific
heat of an isolated harmonic oscillator. In this case, the agreement
with the experimental results is not as good as 3k/2m, which we obtai-

ned above with 6 = 1/2.
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