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The relativistic time-dilation is taken as a starting point
for deriving the mass-increase formula of special relativity. The ana-
lysis of two examples of mechanical systems shows that the slowing down
of their internal processes is incompatible with newtonian mechanics,
and leads naturally to the assumption of a variable mass. The relevant
physical presupposition used in these two new derivations and in old
ones is momentum conservation. Although supported by analogy to classi-
cal conservation laws, this supposition as commonly presented shows an
arbitrariness which can be removed by operational elucidation of thedy-

namical concepts.

Utiliza-se o efeito relativistico de "dilatacdo do tempo
como ponto de partida para a dedugdo da féormula de aumento de massa da
relatividade especial. A anéalise de dois exemplos de sistemas mecanicos
mostra que o retardamento de seus processos internos € incompativel com
a mecanica newtoniana, e leva naturalmente a suposicdo de uma massa va-
riavel. O pressuposto fisico relevante uti lizado nessas duas novas de-
dugbes e em outras antigas % a conservacdo do momento. Embora apoiada
por analogia com as leis cladssicas de conservagdo, esta suposi¢do, do

modo como & comumente apresentada, exibe uma arbitrariedade que pode ser

removida pelo esclarecimento operacional dos conceitos dinamicos.
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1. INTRODUCTION

The relativistic relation between (transverse)mass and speed

of a material body,

m = my/ (1-02/c2)1/2 (1)

has historically ariseri from the study of the electromagnetic mass of
the electron, iniciated by Abraham!. 1t was correctly derived for the
first time by Lorentz? and appears on Einstein's first paper on relati-
vity3, where it is derived from eiectrodynamical considerations. These
pioneer approaches were not intended to be general: the obtained results
dependend on the adopted definition of force and acceleration, as poin-
ted by Einstein3, who has also produced a different formula, by consi-
dering another definition of transverse electromagnetic force4. There,

he arrives at:
m = my/(1-v2/c?) . (2)

Besides its historical relevance, the electrodynamical ap-
proach in the form first presented in 1911 by Laue3, where particle dy-
namics is derived from continuum mechanics, is considered by Costa de
Beauregard® to be the best way of forrnulating special relativity,becau-
se this allows the total number of independent postulates to be reduced

TOo a minimurn.

Purely mechanical formulations of relativistic dynamics ha=-
ve been produced from time to time, and an excellent survey of these is
presented by Arzeliés7, where relevant references can be found. Some
modern advanced textbooks8?% use four-vectors and covariance properties
in order to obtain the relativistic momentum-energy, and then define a
relativistic mass in accordance with these formulas. This approach was
presented earlier by Einsteinl? in a simplified way, its physical mea-

ning was implicit in a still earlier paper by Lalanll,

Many authors of introductory textbooks!2715 and classical
treatisesl6217 prefer the classical derivation by Lewis and Tolmanl®

where an example of collision tliough-experiment is analysed, and momen-
tum transformation is derived from relativistic kinematics and momentum

conservation. Then, by analogy to newtonian definition of momentum, a
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relativistic (transverse) mass is defined. Although somewhat lengthy,
this seems to be hitherto the best didactic way of introducing relati-
vistic dynamics, because it employs only elementary mathematics, and

makes use of enlightening physical analysis of the collision situation.

in our teaching practice, however, we have felt that phy-
sics students do not usually understand the important physical assumpt-
ions at issue, and do never perceive any conceptual relation between
formula (1) and similar relations from relativistic kinematics. such as

the "time dilation"™ formula:

T= TO/(l—vz/cz)l/2 (3)

We have developed two new derivations of (1) that show a
simple and clear relation between formulas (1) and (3), and that have
not been published previouslym. In this paper, after presenting the de-~
rivations in their simplest form, some conceptual problems are discus-
sed. A methodological imperfection is found, which is also present in
Lewis and Tolman's method, and that can only be surmounted by acoherent

presentation of relativistic dynamics.

2. TIME DILATION AND MECHANICAL CLOCKS

Let us suppose that ¥ is a material system where a periodic
process with proper period T, occurs. If ¥ is initially at rest relati-
ve to an inertial referential S, and is then slowly accelerated ( so
that its mechanism is neither damaged nor suffers any sensible elastic
deformation)until it attains a speed V relative to S, then it will be
observed to have a new period T relative to S, as given by (3). This is
a consequence of relativistic kinematics, and must apply to any kind of
periodical process, independently of its internal working. Now, this
result it incompatible with classical dynamics, because tnere are very
simple kinds of mechanical periodic motions which could not undergo
any change of period when the system is accelerated, if newtonian mecha-
nics were valid. Two such periodic processes will be discussed in this

paper (Sections 3 and 4): a frictionless gyroscope and a bouncing mate-
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rial body moving along a frictionless beam kept perpendicular to the
direction of acceleration. In these simples cases to be analysed, the
constancy of the period predicted by classical mechanics is a conse-

guence of four assumptions:

P1) geometry conservation;
P2} definition of momentum;
P3) parallelism between force and momentum change;

P4) mass constancy.

When the systems are analysed according to special relati-
vity, it is seen that relativistic kinematics allows us to retain as-
surnption (P1) when relevant geometrical factors are perpendicularto the
accelerotion of ¥. Then, at least one of the remaining classical as~
surnptions must be changed in order to allow a period change of these
processes. It will be shown that if we drop (P4}, (P2) and (P3) may be
retained, and relation (1) follows as a necessary consequence of these
assurnptions and relativistic kinematics. The scientific status of (P2)

and (P3) will be discussed afterwards (Section 5).

3. THEBOUNCING CYLINDER

Let us suppose that a material body such as a drilled cylin-
der C moves up and down?29 along a frictionless beam B inside a box which

is at rest relative to referential system S (Fig.1).

The speed “, of the rnoving cylinder C is constant, relative
to 3, except when it interacts with small springs at the ends of B. The
inertial mass of the box is supposed to be so much larger than that of
C, that the vox recoil may be neglected, in order that it can be suppo-

sed to be at rest.

The springs produce a velocity inversion of C. The interac-
tion time is supposed to be negligibly small, as compared to the period
of the oscillations. If the vertical?C distance travelled by the cylin-
der inside the box is h, the period of its oscillations, relative to S,

will be:
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Fig.l = A cylinder C slides up and down aiong a frictionless beam 8. When

the box is accelerated by a horizontal force F, the cylinder moves slo-
wer. This could not happen if newtonian mechanics were valid. The speed
change may be explained by a mass increase.

To = 2.720/14z (1)

If the box is now submited to a force Fdirected parallel to
the x-axis of system S, and reaches any horizontal speed relative to S,
and then its velocity remains constant, the period of the cylinder os-
cilations would not change, if classical rnechanics were valid:the fric~
tioniess beam B can only communicate to C a force perpendicular to the
beam; so, p, (the z-component of the cylinder's momentum p) cannotchan-

ge, by (P3). Now, by the classical definition of momentum (P2), we have:

p. = mu (5)

if P, is constant, and if we assume that m is constant (P4).
relation (5) implies that uz must remain constant. Now, the period de-
pends only on h and 4 . But there is no classical reason for supposing
that the geometry of the box will change (P1); so, the period should be

constant.

But, by relativistic kinematics, we know that this period
must change, and that it will generally have different values relative
to non-equivalent inertial referential frames. After attaining a speed
V, its new period 7' will become

7= 1’0/(1-1)2/02)1/2 (6)
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Kinematically, it is easily seen that this period must be

equal to:
T = 2.0/ u’ (7)
2

where 2! and ué are respectively the new vertical distance travelled by
the cylinder and its new vertical speed relative to S. Now, as in this
case the height of the box is perpendicular to its motion, it does not
change, because Lorentz contraction is always parallel to the velocity.

So, h'=h0, and by (k) and (7) we have:
T'/Ty = u/ul (8)

Applying (6) we deduce that the vertical component of the ve-

locity of the cylinder has been reduced:

u; = uZ(l-vz/’cz)l/2 (9)

Why should the speed change, if there is no vertical force
applied to the cylinder? The answer must be a dynamical one. If the z-
-component of the momentum has not change (P3) and if we addopt the

classical definition of momentum (P3), we must have

p, =p, (10)

= 11

P, mou, am
14 = ! 14

p, =m'uy (12)

and from these formulas we deduce

mau_ =m'u! (13)
5 3
Using (6) and (8) we obtain:
m'/m = uz/u; =7'/T, = (1-v2/22)1/2 (14)

This shows the whole of the argument is a contracted form :
mass must change because vertical speeds change, and these change be-

cause the period must change.

320



4. THE GYHOSCOPE

A similar deduction may be taken from the analysis of a 'gy-
roscopic clock', which for simplicity will be supposed to be similar to
a bicycle wheel W which spins along an axis A fastened by frictionless
bearings HH to the walls of a rigid box. The box is at rest relative to
a referential system S, and the axis of the wheel is parallel to its X-
-axis (Fig.2). The radius of the spinning wheel is r, and its whole
mass m is supposed to be at this distance of the axis. Its moment of

inertial will be:

I =m.r? (15)

and its angular momentum M is:

M=1l.2/T = 2mm.0»2/T . (16)

Now, if the box acquires some speed relative to S, by the
application of a force parallel to the x-axis, no torque will be ap-

plied to the wheel, and so, by classical mechanics, its angular momen-
tum must remain constant. As the radius and mass of the wheel could not
classically changej the constancy of the angular momentum implies the
constancy of angular speed and period.

1\

z

.

x
S

Fig.2 - A wheel W spind around an axis A attached to a box by friction-

less bearings HH. When the external force F transmits to this system a
speed V, the wheel must turn slower, by relativistic time-dilation. Asthe

angular momentum could not vary, its mass must have changed.
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In this analysis, two of the relevant suppositions are sligh-
tly different from those used in Section 3. They could be thus expres-
sed:

P2') definition of angular momentum;

p3') constancy of angular momentum in the absence of an ap-

plied torque.

These assumptions, in classical mechanics, are intimately re-

lated to the previous ones, as is well known.

The analysis from the point of view of special relativity
shows that I remains constant, in this case. So, if the period changes,
we must accept either that angular momentum may change without any ex-
ternally applied torque, or that m is not constant, in order to explain
the period change. If we retain (P2') and (P3') in relativistic dyna-

mics, then, from time-dilation formula (5) and from the constancy of M

we deduce:
2mm’ P2 /T" = 2mm. 2 /T a7
m'jm = T /T (18)
m! = m/(1-v2/e2)1/2 | (19)

5. CONCEPTUAL DISCUSSION

There are three central points of these derivations which de-

serve discussion. Two of them are completely answerable problems.

5.1 - iIn the two examples presented at sections 3 and 4, we compare the
behaviour of the same physical system, before and after acceleration, re-
lative to S, in order to derive the mass-speed relation. But the presen-
ted relations of special relativity (particularly the time-dilation for-
mula) are not derived as consequences of the acceleration of a material
system: they are deduced as the necessary relations between measures of
a system which is always at rest relative to a given referential system,
but which is observed and measured also relative to another referential

system which moves relative to the first one, at a constant velocity. So,
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the question arises: is it valid to use the time-dilation formula in the
studied examples? If it is valid, may the deduced consequence (mass -ve-
locity relation) be applied .to situations where no acceleration is ap-

plied to the material system whose mass is considered?

W may answer affirmatively to both question. This is a con-
sequence of the supposition that, if a physical system acquires in any
non-destructive way any constant velocity relative to a given inertial
referential system |, the final behaviour of this physical system, rela-
tive to its rest frame, is independent of its speed relative to I, and
is also independent of the accelerative process. This is one of the ways

of expressing the physical content of the principle of special relativi-

ty.

52 - in its usual form, the mass-velocity relation (1) compares the rest
mass of a material system with its mass m relative to another refe-
rential frame. But in the two cases presented in this paper, the mate-
rial body whose mass change is cornputed is never at rest relative to the
used referential systems: it has a vertical or circular motion, even be-
fore acceleration of its enclosing bo~ May we assume that relations (14)
and (19) do also apply to any object initially at rest relative to S ?

Is the result mathematically consistent with (1) ? Let us see.

If any part of a material system suffers a relativistic mass
change, all of its other parts must undergo a proportional change, be-
cause if this did not happen, the moving system would not behave in the
same way as when it was at rest. Besides, the initial motion of the ci-
linder and of the spinning wheel may be as slow as one wishes, and so
there is no reason for supposing that the mass change would be different

if they were initially at rest.

As to the mathematical consistency, some simple calculations
show that (1), (14) and (19) are compatible. W will study only the cy-

linder example:

Let us suppose that the rest mass of the cylinder C (Fig. 1)

is My - When the box which contains C is at rest relative to S, the cy-

linder's mass must be, from (1):
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2)1/2

m=m /(l-—uzz/c (20)

0

When the box acquires the speed v, the speed of C relative to

S becomes
w= (w2 +v2)1/2 (21)

so that its mass should be

mo/(l-wz/cz)l/2

mo/ll-(ué2+vz)/02]1/2 (22)

Relation (22) is deduced from (1). Is it compatible with(14)?
Yes. A simple manipulation allows us to deduce (14) from (9), (20) and

(22). The proof will not be reproduced here.

5.3 - The great conceptual difficulty of the derivations shown in this
paper (and which are also present, under disguised form in the usual di-
dactic derivations) is the physical support of (P3) - or (P3'). First,
let us notice that (P2) - or (P2') - is just a definition which allows
(P3) - or (P3') - to make any sense. The physical propostion is not con-
tained in the definition, which presents no conceptual problem. The ques-
tion is: what supports the supposition that p = or the angular momentum=

remains constant in the studied examples?

One could be tempted to use the classical constancy of these
magnitudes as evidence, but this is not valid. In fact, we may easily
show that there are other mechanical magnitudes which should remain cons-
tant according to classical mechanics and which our "intuitive feelings'
would not allow to change = but which do not remain constant, according
to special relativity. Let us take as an instance the magnitude K defi-
ned as

K, =mu?/2 . (23)

This magnitude is the contribution of the vertical motion of a moving
body to its classical kinetic energy. According to classical mechanics,
this magnitude remains constant, in the case of the bouncing cylinder.

There is no reason to suppose that Kz changes when the box is accelera-
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ted, because there is no vertical component of any force acting on the
cylinder, and so there is no work done on that direction. But if we sup-
pose that this magnitude is also constant in relativistic mechanics, we

obtain the wrong result analogous to (2):

m' = m/(1=v2/c2) (z4)

The same relation would be deduced if we tried to separate
the gyroscope's kinetic energy in two parts (translaticnal and rotatio-
nal) and then supposed that its rotational kinetic energy Kr

K, =1I. (24t/7) 272 (25)

remained constant.

Although this kind of premises lead to the wrong result, it
seems very natural and "intuitive' to allow the kinetic energy to be de-
composed into several' independent contributions. This was (wrongly) used
by Epstein21, who, in a paper about special relativity, considers the mo-

tion of a simple pendulum and says:

"In this case, the kinetic energy of oscillations can be
readily separated from the kinetic energy of the translatory motion and

the usua! theory of the pendulum can he applied."

From this, he obtains the wrong transformations formula for

forces in special relativity.

in a simple derivation of the mass-speed relation, Bondi22

tried to justify the constancy of p by the following argument:

"To visualize this sort of toy experiment we may consider a
case where B fires bullets at pieces of armor plating and we shall make
the assuption that the penetrating power of the bullets depends solely
on the component of momentum at right angles to the pieces of armor pla-

ting. (see our Fig.3)

''We assume that A and B agree about distances at right angles
to their motion. If they do, then since the thickness of the armor pla-

ting is at right ahgles to B's motion, they agree on this. They agree
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Fig.3 - The method proposed by H. Bondi for comparison of transverse li-

near nwmnta: a gun G fires a bullet towards an armor plating P; Bondi
supposes that the penetrating power of the bullet depends only on its

transverse momentum.

also on the distance from the muzzle of B's gun to the armor plating.
Furthermore, whether or not the bullet penetrates the armor plating is
something that A can see and if the penetrating power depends wholly on
the normal momentum, then by using different bits of armor plating and
seeing whether the bullets penetrate them or not, A and B can reach en-

tire agreement on the normal rmomentum of B's bullets."

Now, there are two important faults in this argument. First:
in classical physics, the penetrating power of the bullets does not de-
pend on the component of rnomentum at right angles to the pieces of armor
plating; it depends (and is directly proporcional, in this case) to the
"‘component™ of kinetic energy Kz at right angies to the armor plate. Se-
cond: he assumes that the motion of the armor plating does not change its
intrinsic resistance to the bullet, because its thickness did not chan-
ge. That is not correct. A relativistic analysis which will not be shown
in this paper proves that the intrinsic resistance of the armor plating
changes with its speed (it is easier to penetrate a shield at rest rela-
tive to the gun than one moving relative to the gun, perpendicular to
the bullet's direction). Although Bondi's argument is wrong, he obtains
the correct relation between mass and speed, because the two errors mu-

tually cancel.
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So, why should we prefer (1) and (14) to (2) and (24) ? Our
discussion has showed that there remains a kind of arbitrariness in re-
lativistic dynamics if we try to build it from sirnple analogies of clas-
sical dynamics. This arbitrariness arised from the tentative of deriving
a relation between mass and velocity without an explicit elucidation of
the dynarnical concepts, such as force, momentum, energy. There is no ar-
bitrariness when operational meanings are given to at least one of the
dynamical magnitudes. This will be shown in a following paper, which will
present a detailed examination of this methodological aspect of relati-
vity, which has not deserved up to now the close scrutinity that it de-

serves.
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