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"A large class of classical and quantum systems exhibit phase
transitions of the same nature of those observed in the Free Bose Gas
and in the Spherical Model", This statement is discussed in an intro-

ductory manner.

"Uma classe ampla de sistemas classicos e quanticos exibe tran-
sicdo de fase de mesma natureza daquelas observadas no Gas de Bose Livre
e no Modelo Esférico'. Apresentamos uma discussdo introdutéria dessa pro-

posicao.

1. INTRODUCTION

The purpose of this paper is to show how, from the study of two
motivating examples: the Free Bose Gas and the Spherical Model, it ispos-
sible to ahstract some general features of the phase transitions associa-
ted to a large class of classical and quantum systems. These models refer
to quite different physical situations {the Free Bose Gas describes quan-
tum particles, the Spherical Model incorporates some features of classi-
cal ferromagnets or classical lattice gases). In spite of that, there are
striking similarities in thair behavior, specially with respect to the

associated phase transitions. The common features we want to stress are:

* partial Financial support by CNPq.
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a) Their Gaussian nature, which accounts for their explicit
solvability and for a specific behavior of the two-point functions o(p)

around » = 0; and

b) The Sum Rules, which in the - Free Bose Gas corresponds to
the density constraint and in the spherical model to the "sphericity"

constraint.

In v » 3 dimensions and at low enough temperatures, a) and b)
combine, in both models, to produce a '‘condensate' of zero momentum or a

spontaneous symmetry breakdown.

Great progress has been achieved in the theory of phase transi-
tions and spontaneous symmetry breakdown after the pioneering work of
Frohlich, Simon and Spencer [I,FSS] who realized that features a) and b),
in the form of {nequalities could be found in a large class of models. In
particular they showed that the N-vector model (N=1 is the Ising model,
N=2 is the plane rotator and ¥=3 is the classical Heisenberg model) in vz3
dimensions have a phase transition and provided lower bounds for their

critical temperatures after proving:

a') Gaussian Domination: the two point function p{p} of these
models are, for p # 0, dominated by the two point function of the spheri-

cal model (Infrared bound)

b') Sum Rules, which just express the fact that

06220, 0,+. . 40 Op=1s =1,...

As in the Free Bose Gas and in the Spherical Modelat low enough
temperatures, a') and b') combine again to produce a ''condensate' of zero

momentum or a spontaneous magnetization.

The lower bounds in the critical temperature are excellent when
compared to values which are considered to be exact: for N=I (ising) the
errors is 14%, for N=3 (Heisenberg) 9% and as N = = (spherical model ! )

it is exact.

Extensions of these ideas, techniques and results have been ob-

tained by Dyson, Lieb and Simon2 |In particular they prove phase transitions
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and estimate critical temperatures for the X-y model and for the quantum
Heisenberg antiferromagnet in v % 3 dirnensions (but not for the Heisenberg
ferromagnet, as erroneously annouced in the original version). By another
point of view, quantum systems have been also analysed by Driessler, Lan-
dau, Perez and Perez-Wrezinski3***5 where, for a class of systems, the

problem is reduced to a classical one after 'euclideanization'.

The crucial Infrared Bound is, both for quantum and classical
systems, a consequence of a positivity condition known as Reflection Posi-
tivity. This property allows the introduction of a scalar product in the
space of observables and Gaussian Domination follows from the associated
Schwarz inequality. The general theory of Reflection Positivity and Gaus-
sian Domination is developed in the series of papers® by Frohlich, Israel,

Lieb and Simon.

We are not going to prove a') here we will rather restrict our-
selves to understanding its content and exemplify its applications. The-
refore this paper may be viewed as an introduction and could serve as a
guide and an appetizer to the reading of the original papers quoted above.
The material presented originated from a series of lectures on these to-
pics held at different places. 1t is a pleasure to thank Ricardo Schor for
suggesting its publication. W thank also W.Wreszinski for a careful re-

vision of the manuscript and for stimulating discussions.

2. THE FREE BOSE GAS

Let us consider a gas at a fixed density p and ternperatures 8

of non interacting particles obeying the Bose. Einstein statistics, en-
s . b v

closed in a volume A€ Rv. If we take A to be a cubic box A = [_f}, + 2‘]

with periodic boundary conditions , the Hamiltonian #, is given by

A

Hy = ) EA* [w(k) - u]a*(k)a(k)

*+ This choice of the boundary conditions is just a matter of convenien-

ce.



- [ @ G ) (u@) - @@ @
A

where:
27 v
G)A*={k=—-__—7’l nGZ}'—‘
L
_ 27
k =(kpmnk)), k= $Ens, ng € 2] (2.2)

b) y(x) and *{x} satisfy the canonical commutation rules

fw(=), v*@)] = s(z-y) (2. 3a)
(@), v()] =0 = [v*=), vM)] .

The Fourier transforms of ¢{x) and w*(x)

i

{a(k) 1 Jdvx o) otk
R

(2. 3b)
2* (k) =_1__Idvx o) ot
/K
satisfy the canonical commutation relations:
[a(k) » a*(kf)J = 67{7{'
(2. 3¢)

[a(k), alk')] 0 = [a*(k), a*(k)]

2 .
o) wlk) = k—2 is the energy of a free particle of momentum ;and

d) the '‘chemical potential' u is introduced as wusual in the
grand-canonical ensemble, in order to adjust the density p of the sys-

tem, that is, u is a function uA(p) defined impiicitly by the equation:

<>, 1 e
p=—F =73 L <a* (k) a(k)>!\_ (2.4)
k € p*

where the symbol <A>A means the expectation value of the observable 4 in

the Gibbs state at given inverse temperature B:
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—BHA
_Tride
A _T (2.5)
Tr e

< A >

A standard computation yields tne well-known result:

(k,u) = 4 <a*(R)a(k)>, =+ — L (2.6)
PA H T A s eB[w(k)-u] o

and therefore the ''sum rule' (2.4) reads:

) 1
p (w) = ¥ p, (k) = N _ -5
A ke A 7 ke A+ exp Blw(k)-u]-1
(2.7
The functions pA(k,u) have the following properties:
a) o (k) >0, (&, u') >0 (2.8)
if 0> u>u!
b) pykom) —— 0 (2.9)
u D> =
u+0 ! )
oy (k,u) - , k#0
A exp Bu(k) -1 (2.10)
@) - —L
e-BU 1 U +0

d) pA(u) is convex.

Therefore at fixed 8 > 0 and p > 0 and for all A finite there

is unique solution

u o= uA(p) <0 (2.11)
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of the density condition (sum rule) (2.7) .*

4 Alp)
P
™ N
Fig.1
, Defining
p,(K) =0, (k, u,(p)) (2.12)
we obtain from (2.11) and (2.6)
limp, (k) =0 if Xk # 0 (2.13a)
A—)Jo
and
1 i
p(0) = 1im 5,(0) =1im § ———————— {2.13b)
A— 0 IS exp[-BuA(D)]“

For a comprehensive discusssion of the thermodynamic limit of the Free
Bose Gas see references[9] and [11].

On the other hand, from (2.7)

J
Iy

2 i
ven @ el® - @] -
k #£0

0,(0) =p - (2.14)

* From a), b) and c) listed above, the function pA(u) = kéA* pA(k,u) has
a graph looking like the plot of figure 1.
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which in the thermodinamic limit A + = reads

] (Y 1
0(0) = p - —— | d% (2.15)
(2m)” ) exp Blulk) - w(p)] -1 ,

where p{0)} = tim pA(D) and plp) = 1im UA(p),
Moo

Ao

Now, for vV < 0 from (2.8)

1 v 1 1 V. 1
dk —————— < p _(B) = J —_—
(2mV J LAl max (2m)V ool

(2.16)

and,

pmaX(B) < (2.17)

if and only if vz 3. (%)

From (2.151, (2.16) and (2.17) we then conclude: p(0) >0 if
p > pmax(s), i.e. there is a macroscopic occupation of the zero-energy sta-

te which is the phenomenon of Bose-Einstein condensation.

The occurrence of condensation is connected with the sponta-
neous brealtdown of the gauge symmetry, that is, the invariance of HA un-

der the transformation

alk) —— ™ (k)
(2.18)

a* (k) — o7t a*(k)

To show that link we consider the Harniltonian

(*) In fact, the singularity of the integrand in {2.16) at k=0 is inte-
grable if and only if y 3 3, since eSm(k)_‘ =0 (w(®)) =0(%2) as k> 0

and V.
J CL o iff vi3.
[kls1 &



g = 1 [w®)-u] a*(®alk) + AWVE [a*(0) + a(0)]
- - @a® + [w(0) )i 0 + 2B
k€ [w(ﬂ) -u]
k#0
« [al0) + ﬁﬁ%]} - a2 (2.19)
Introducing new variables
b(R) = alk), b¥(k) =a*(k) if k#0
and
B(0) = a(0) + 2 | px(0) = a*(0) + 2K
w(0) -u w(0) -u

which also satisfy the canonical commutation rules (2.3) we obtain

H

111

L= E +ai = ek -] p*(R)D(K)
k€A

and we are back to the original problem. The two point function is there-

fore given by

1

Lk A0
exp Blw(k) -u] -1

<a*(k) a(k)>, =

, (2.20)

_ 1 A2A

<a*(0) a(0)>A T Y v
e -1
and the sum rule (2.4) reads

2
L) ' =0 (2.21)
u? e "V -1 v e pexp Blu(®-u] -

2
Because of the extra term )‘—2 (as compared to (2.7)), the solu-

tion uA()\,p) of (2.21) for A#0 remains strictly negative even in the 1i-

mit A > o
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2
A, 1 J 3k - . o (2.22}
B

u? (2m)® o fw()-u] _ I

On the other hand, the one point functlons are given by:

v 1 A
<w*(0)>A - i' JA Wiy dz - ;%'<a*(o)>A T up(x,e)
(2.23)
<y (0)> -1 <pla)> dvx=—]—’a(0)> = A
¥ ATE g, P>y e LS PWY

where we used in the first equality sign, the invariance under transla-

tions. In the thermodynamic limit

«(0)> = <p*(0)> = —2 | (2.24)
wlx,p)

From (2.22) we get then

2
W*(0)5<p(0)> = p = — o ! =2 (2.25)
P (2m)¥ j eslw(k)-u(k,p)] - u(x,p)

and so even when A » 0 (after having taken the lim A + « !}
2 - 2 - -
l<v (0)>]2 = |<p(0)>]2 =p - o (8)> 0

ifp> pmax(s). That is the syrnmetry is not restored by taking X +0 after

taking A &> «.

3. THE SPHERICAL MODEL

In 1952, Berlin and Kac? introduced a model which incorporated
some features of the }sing model and had the advantage of being explici-
tly solvable in all dimensions. The model was coined **spherical' because

of its kynematics which can be described as follows.
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in a finite volume A in a v-dirnensional cubic lattice, i.e.A CZ

we consider classical ''spin' variables ¢{(x) € R at each site x € A . For
simplicity we will take A to be the hypercube A = I-L,. ..,0,..., + L 1A

The variables ¢(xz) are however constrained by the condition
% Y 02(@) = (3.1

Therefore a configuration ¢ of this system is a function ¢: A -+ R and
can be viewed as a point in the surface of a A dimensional sphere of ra-
dius vA as opposed to the Ising model, where 4(x) = +1 and whose confi-

gurations are the vertices of hypercube of side 2 in A dimensions.

The energy HA(¢) with periodic boundary conditions of a confi-

guration is given by

7,(6) = (o [——3-- we) = ¥ o) [(-a-w) 6] () (3.2)
X en

where:

a) the " lattice laplacean™ A is given by

) v
a0)(x)=20(z) - § [ole+e) - ¢la - e )] (3.3)
=1 v

the e., Z=1,...,v being the unit vectors in the i-th direction. In (3.3)

we used periodic boundary conditions in A.
b) the scalar product (f , g) is defined by

(r,q = 2 Flx) glz) (3.4)
x €A

and
c) the "chemical potencial™ y = uA(B) is introduced in order to
handle the spherical constraint (3.1) in the same way we treated the den-
sity condition of the free Bose gas (grand-canonical ensemble!) i.e. uA(S)

solves the equation

1
T8, =1 T <e2(@)>, =1 (3.5)
x € A
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where <.>, refers to the expectation value in the Gibbs' state defined by

HA at inverse temperature B

f( T de(z) Flg) e BE®

<F> = x €A (3.6)

A
£ (ndp(z)) e~ BE®)

The Fourier transformation f of a functionf = A - C is defi-

ned by

%(p)'=—/‘—jT ZA e g (3.7)
X

for p € A*= {p=7§—zr,x€A}, that is f = A* > C.

The Hamiltonian (3.2) is ''diagonalized" by Fourier transforming
of the configurations:

B0 = 1 el -ul* (0§ (3.8)
ke ax
where
v :
a) w(k)= } (l~cos k;) (3.9)
=1

b) $*(k) denotes the complex conjugate of &(k), and from the

reality of ¢{z) it follows that

o*(k) = o(-k) (3.10)

The model is solvable, since the computation of its correlation
functions involvesonly Gaussian integrals. The twopoint function

<¢*(k)§(k)>, for instance is given by:

|

<Pk )le)>, = ———r
B [w(k)-v]

(3.11)

Fhe "'sum rule' (3.5) can be rewritten as
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%sz* GRH> = 1 (3.12)

where we used the fact that ké A% FlR)g(k) = © é A Flx)g(x) . Therefore

Iy 1 - (3.13)

b e 28[w(0-]

As in section 2, for all finite A there is a unique solution
uA(B)<0 of (3.13). (Verify that the function jR(u) in the left hand side
satisfies: a) fA(u) > fA(u') ifo>us>u';b) fA(u)m—* 0 and c)
fk(u);—:fz ©, d) fh(-) is convex

In the thermodynamic 1imit, we have

1 <§*0)5(0)>, =

) ! - (3.14)
Moo xea* 28fw(k) - uA(B)]
k#0

I
]

3
i

1
o J &k —
T B 28{w(k) - u(8)]

where Bv = [‘n, +ﬂ]v and u(B) = Aig uA(B). Now, for wu(B) g 0
v v
1 [ d” (k) < ! J d’k = I(v) (3.15)
Y s 2[wk) - u(e)] (2m)¥ B 2u(k)
and so
p(0) 31 - L0 (3.16)

B8

Notice that T(v) < « iff v 3 3. This implies that for 8 > T(v), v 2 3 we

have

p(0) > 0 (3.17)

i.e. there is 'condensation' in the zero energy mode.
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The occurence of ''condensation'' in the spherical model 1is, as
in the free Bose gas, connected with the existence of spontaneous ‘''magne-
tization". To see that, let us introduce an uniform external field %, by

considering the new Hamiltonian

7 (6)=a06)-1n o{x) =
A A xéA

= #,(¢)- /K $(0) =

2
-] bRl + [w(m-u][&(‘b) - ——h—“x—} (3.18)
k #0 2[w(0) -]
k € A%
_ h2p
4[w(0) -]

If we introduce new variables ¢{x) given by

Pk) = &) , k #£0
. R (3.19)
‘1,(0) = ¢(0) __h‘/_lT___..

2[w(0) -]

we are back to the original problem:

h2p

(¢) + ——— = 75, (3.20)
A 4w (0) 4] A

The two point function of the a variables are then given by:

<*(k) 6 (k) >, :'15 m oy
(3.21)
<6*(0) #(0) >4 =ls ! LB
2[w0)-u] b [o(0)-1]?
The sum rule reads then
- t L T (3.22)

4 [w(0)-1]2 T ke a* 2[w(k)-u]
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Due to the extra term on the left hand side of (3.22), the uni-
que, solution uA(B,h) < 0 remains strictly negative even in the limit A3
ifk £o0:

}\im up(B,m) = wu(Bh) < 0 (3.23)
In this limit (3.22) reads
2 AY
N + 1 I dk = 1 (3.24)
sw()-u(e,m]% & 7 2wk - uB:"]

since from (3.21) we have

1 h?
Tim 5 <6%(0)0(0)> = ———r

foo 4w (0) -u]?

O the other hand, the one point function is given by

@07 =1 ] <> = k<505, =+ é (3.25)

2 € K 2[(0) -, (8,M]

where again, we used translation invariance.

In the thermodynamic limit

m(k) = 1im <¢(0)>A= h (3.26)
Ao 2[w(0) - u(g,n)]
and so from (3.24)
: v
mm)2 = -1 _1 [ ak (3.27)
B (2m2 J, 2[u(®) - u(g,n)]
v

Therefore, since u(B8,%) - 0 as h > 0 (so as to keep (3.24) va-
1id) if 8 > B, = I{v) we have

m(0)2 = 1 - Ié") , (3.28)
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that is the spontaneous magnetization squared is equal to the ''density of
condensate™ p(0) given by (3.14). It is important to keep in mind that
for B> B8, = I(v), o(0) #0 if we first set h =0 and then take the limit
A+, Ifw first fix h #0, take the limit A > « and then the limit &>
we get p(0) =0 by the remark following (3.24). For m{%) it is just the
opposite: if we first take A finite and set h = 0 then m(0) = 0.

4. THE N-VECTOR MODEL

This model for N 3 2 is a generalization of the Ising model
(w=1). At each lattice site x € Z° we have a continuous “spin'' variable

¢z} = (¢, N(x)) € R subject to the constraint

N
uwzsj{%mﬂ =1 (4.1)
17 =

That is a configuration of the system in a finite volume A = {-L,..., L}\>

is a function ¢ = A ~ SZV-] where S. is the sphere of radius 1 in R .

N-1

The Hamiltonian is the usual Ising Hamiltonian:

) (4.2)

N} e

H,(¢) = (o -
where the lattice laplacean, and the scalar product { , ) are as defined
in §3.

A Ysym rule" is trivially obtained from (4.1):

TG0 =1 1 sm2z=1 1 wiw =1 (3

Notice that (4.3), in contradistinction to (3.5), holds without

taking expectation value.

As is well known this model is not explicitly solvable in v 2 2
dimensions the only exception being the case ¥=1, v=2 (two dimensional
Ising model). Numerical calculations however, suggested the existence of

phase transitions with spontaneous breakdown of the 0(¥) symmetry for v33
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and ¥ ® 2. The existence of phase transitions in the Ising model, ¥ = 1,

v z 3 follows from Griffiths' inequalities. For N3 2, v £ 2 no sponta=-

neous breakdown of a eontinuous symmetry for short-range interactions is
possible, by a theorem of Dobrushin and Shlosmanl!?. (Another result of

Mermin and Wagner8 forbids spontaneous magnetization).

The central results of FSS [1] is the estimate

2,() < 2,(0) (1 4)
where :
1) k is a function
h: A = RN
x .+ nlz)e RY
and

.2) 2,(7) is the partition function of a modified N-vector model

obtained after the replacement in the Hamiltonian (4.1) of ¢(zx) by
$lz) + F(x), x € A i.e.

2,00 = [ U1 62D b)) explogn (443)  (h.5)

x € A
Since
A
Hylo + ) =8,(8) + (B, -8¢) + (h -55): (4.6)
we can rewrite (4.4) in the form
z,( %) (n, % n)
A_ =<e-(h’A¢)> e ’ < 1 (4.7)
ZA(O)
i.e.
-(h,09) (7, - 2 0)
< e > < e (14.8)

if in (4.8)we replace h by X and consider the Taylor expansion
in Aof both members we have

L= 3 <(0,88)> + 22 <(7,-80) (h,-08)> € 1+ 32 (h, =5 1) (4.9)
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since, by translation invariance

<hag> = ] (=aR)(x) <¢(x)> = <6(0)> §  (-Am)(x) =0 .

x € A x € A
Therefore:
<(3,-88) (B=b)> < (B, = 2 1) (4.10)
If we take
_ 1  ip.x -p.x . :
h(x)—7z_(3 +e )6,7‘7: , d= 1,0,V (4.11)
we get
b.(* §.(p)> ¢ — p# 0 (4.12)
¢ 28E(p)
and summing over Z = 1,...,v
<*p)-bp) > ¢ L (4.13)
2BE(p)

This is the so called Infrared Round which expresses the pheno-
menon of gaussian domination. In order to understand this nomenclature
compare (4.13) with the exact two-point function (3.10) of the (gaussian)
spherical model. (The factor N in (4.13) accounts for the number of com-

ponents of$).

If we now combine, as we did in § 2 and in § 3 , the sum rule
(4.3) and the Infrared bound (4.13)} we have:

TaM0do> 21 -1 7 (4.18)
p € A* 2BE(p)
p#0
and in the thermodynamic limit
0(0) = Tim L <o%0)6(0)> 3 1 - L 1(v) (4.15)

Ao A B8

with IT{v) given by {(3.15).
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From (4.15) we see that if v » 3 and

g > éc =NT{v) < © (4.16)

then
o(0) >0

.

i.e. then is condensation.

The relation between condensation and spontaneous rnagnetization
is in this case more subtle than in the previous examples. However in2
then is a proof (a generalization of an argument by Griffths) of the re-

lation

m(0)2 3 p(0) : (5.17)

The method requires v 3 3, since v € 2 we have I(v) = . Howe-
ver if suitable long range interactions are allowed then, it is possible
to prove with the same technique to prove phase transitions alsofor

v =1,2.
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