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Energy and momentum equilibria of magnetically confined
plasmas in the diffuse pinch and tokamak configurations have been found
with sca'lar classical tensor classical and'neo-classical transport mo-
dels. A radial oscillation of the electron temperature has the same wa-
velength ~ cze(mi/mg)l/2 (ae =electron Larmor radius) as the fastest
growing electrothermal instability. Its non-linear amplitude enhances
electron energy loss by equipartition. The plasma-wall boundary condi-
tions examined in each case; and, in particular, the scalar classi-

cal transport model is found to give a finite pressure here.

Os estados de equil ibrio de un "pinch" difuso e configura-
¢bes do tipo Tokamak, magneticamente confinados, foram estabelecidos
mediante o uso dos balancos de pressdo e energia en modelos classicos
e neo-class icos de transporte com condutividade escalar e tensorial. Um
oscilagdo radial na temperatura de eletrons tem o mesmo comprimento de
onda -~ c:e(mi/me) 1/2 (ae = raio de Larmor do eletron) que o modo asso-

ciado com o crescimento mais rapido de uma instabilidade eletrotérmica.

* Partially supported by Conselho Nacional de Desenvolvimento Cientifi-

co (CNPq).
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Sua amplitude (nao-linear) amplifica a energia perdida por eletrons por
equipartigéo. As condi¢des de contorno plasma-parede sdo examinadas em
cada caso; em particular, o uso da condutividade escalar no modeloclas-

sico de transporte resulta numa pressao finita ( # 0) naquele contorno.

INTRODUCTION

Three steady state models for the two-temperatures diffuse
pinch and tokamak have been studied under conditions representing mo-
mentum and energy equilibria. In the first model,a scalar electric con-
ductivity is assumed and numerical solutions of the transport equations
show that it is possible for the electron temperature to have a radial-
ly oscillating component with a wavelength of the order (mi/me)l/2
where @ is the electron Larmor radius, which is also approximatel?
the wavelength of the fastest growing electrothermal instability in a
spatially homogeneous plasma with k perpendicular to B. This results in

enhanced electron energy loss to the ions.

It has also been shown that in this model an acceptable
boundary condition (low pressure and temperatures at the plasma-wall
boundary) is not possible, posing a serious question on the plasma con-
finement. A second model where an electric tensor conductivity is assu-
med with thermoelectric effects however yields equilibria profiles with
the desired boundary conditions provided severe restrictionsare imposed
upon its free parameters. A third model employing neoclassical trans-
port has similar properties to the second.A strong axial magnetic field

and a two temperature plasma is included in all models.

1. A SCALAR CONDUCTIVITY MODEL

The transport equations for a steady-state cylindrical e-
quilibrium of a magnetical ly confined plasma with only radial dependen-
ce of parameters can be written in a straight-forward manner if diffu-
sion of particles is reduzed to zero by prescribing an appropriate
axial electric field. Thermoelectric and viscosity effects are neglec-

ted and a scalar electric conductivity is assumed as follows:
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where the classical temperature dependence! of a, Ke and Ki are
assurned. In this model the axial magnetic field does not contribute to
momentum balance, but does affect the' radial thermal conduction.

By prescribing the free paramaters E_, By Tyo» T,o and 7y
where we have the on axis boundary conditions Te(o) =T,0> Ti(o) =T
n(0) = g (BTe/'BY‘ = aTi/ar =B )r=0 =0, eqgns. {1.1)~(1.6) have been
numerically solved employing a Runge-Kutta technique to obtain the di-
mensionless parameters Ee = Te/TeD’ 177/ = Ti/TeO’ n = n/n0 in terms of
x = r/ro, the subscript 0 referring to values at r =0 except for ry
which is an arbitrary scale factor. The integration conducted from the
axis proceeds until one of the parameter fe or fi goes to zero. ltera-
tion methods fail to find solutions for which Te , Ti and # all become
zero at some radius which would define the plasma-wall boundary. The
introduction of radiation and viscosity in the model fails to relax the
wall boundary conditions. Indeed it can be shown by analytical expan-
sion of the parameters that the equations only permit two types to so-
lutions according to their behaviour at the boundary, viz., (i)Te >0
with T. # 0, n#0as in figs. 1 (c) and 1 (d); (11) T, » 0 with T_#0,
n#@®as in figs. 1 (&) and 1 (b).

It could be that inclusion of some further physical proces-

ses (e.g., neutrals) might relax these conditions but as can be seen in
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Fig.1 (a), (b), (c) and (d). Four typical radial profiles of dimension-

less electron temperature Te
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the figures, the parameters that remain finite are not small and so
there is no obvious reason for excluding the validity of the model. The
solutions imply the tendency for the plasma to have a finite pressure
at the wall, i.e., the plasma is not confined. Whilst one might ques-
tion the conclusions of the wall-boundary solutions because of the as-
sumption cif steady-state and the neglect of other physical processes
that might arise say, due to the presence of neutral particles, the in-
teresting spatial variations of Te and » are of more general validity.
The spatial oscillations are probably the non-linear steady amplitude
of an elect/rothermal istability and their wavelength is approximately
1

a, (mi/me)

can be estimated by equating Ohmic heating at one peak with the equi-

2 . . . .
where ag is the electron Larmor radius2. Their amplitude

partition in the adjacent trough and is given by

#3/2 -26(,,2/p2 72 5 y2,7 5/2
Tep = 5.15 x 10 (no/E’z TeO)U + Tio) /Ty (.7
where Tﬂt is the average value of Ti at the trough. The amplitude of the

spatial temperature oscillations here is comparable with that of the
temporal oscillations measured on the PLT Tokamak? and the electro-
thermal instability might well be the explanation of this latter pheno-

menon.

One effect of the spatial oscillations of electron tempera-
ture and the = out of phase oscillations of electron density is to give
an enhanced electron energy loss which can be described as follows.
Ohmic heating is a maximum (through o£2) in the electron temperature
peaks. The heat is transported by electron thermal conduction across
the magnetic field lines, but only over the short radial scale length

)1/2

a {m./m which is the scale length of the electron temperature gra-

dieen7{, fo the electron temperature troughs. . Equipartition of energy to
the ions has a maximum at T = 158 T. for a given pressure, and this
is close to the minimum of Te in the spatial oscillations. In compari-
son with a spatially averaged monotonic profile of temperature, the spa-
tially oscillatory profile leads to an enhanced electron energy lossdue
to the increased equipartition to ions in the temperature minima. This
could perheps contribute to the apparent anomalous electron energy loss

in Tokamaks®.
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2. TENSOR CONDUCTIVITY MODEL

Neglecting diffusion and viscosity, assuming an anisotropic
electric conductivity and considering therrno-electric effects, the
transport equations for the two-temperature fully ionized diffuse pinch
can now be written rrith the halp of Braginskii's classical transport

5

theory formulation and in his own notation as follows:
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In terms of the same dimensionless parameters defined befo-
re and using the same boundary conditions at r=0 and numerical integra-
tion routine, the set of equations (2.1)-(2.8) above are solved yiel-
ding equilibria profiles such as in figs. 2fa) - 2{(e). The profiles
presented in figs. 2(c) - 2(d) are obtained by an iteration scheme ba-
sed on a fine partitioning of some range of values of the free parame-
ter T,0/T o (fig. 2(c)) and Ey (the axial electric field) (figs. 2(d)
and 2(e)) end were found as a limiting case of profiles like those pre-
sented in figs. 2(a) and 2(b)}. In the uni-dimensional parameter space
of Ey (or T{O/Te(]) however, only one discrete value of Eq (or T‘iU/TeO)
gives profile/s where the appropriate boundary conditions are met {(i.e.,
zero pressure and temperature/s at the wall) such\as in figs. 2(c), (d)
and (e). Bremsstrahlung radiation has little effect on the overall pro-
files as can be seen by the broken lines of the plots in fig.2(e). The
question of whether in practice the plasma profiles adjust to the very
precise condition on, say, the parameterE,,so as to satisfy the boundary,
condition of zero plasma pressure at the wall, or whether a finite pres-
sure parsists as in the scalar conductivity model cannot be answered at

this stage.

it can be shown that thermo-electric effects in this model
are resporisible for the desired boundary conditions being met but un-
like in the previous model, the equilibria profiles now present fewer
spatial oscillations for the electron temperature. Indeed it is possi-
ble to obtain hollow electron temperature profiles (fig. 2(¢c)) as has
been observed experimentally6 without recourse to neutrals or impuri-

ties.

3. NEOCLASSICAL TRANSPORT MODEL

An equilibrium energy and momentum balance can be set up
employing neoclassical transport coefficients’in a similar way to
MacMahon and Ware®. As in the tensor transport model above it is found
that by iterating one of the free parameters (e.g. EO) it is possible
to reduce the 'pressure to a very small value at the wall, However a
small deviation in the now defined value of a free parameter leads .to
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large changes in the profile of the electron temperature and a strong
violation of the wall boundary condition. This sensitivity of the stea-
dy state profiles to a small perturbation leads us to doubt whether in

practice the pressure will be small at the wall.

4. THE ELECTROTHERMAL INSTABILITY FOR
k PERPENDICULARTO B AND j

Electrothermal instabilities in a fully ionized gas have
been previously considered for _k_ parallel to 29 and a simple correction
of the optimum wavelength for growth to the case of %k perpendicular to
B10 gives a wavelength of ae(mi/me)l/z’ where & is the electron Larmor
radius, because the electron thermal conduction is reduced by a factor
of (1 + wé’;fé) >> 1. Thus we can consider the wavelength to be small
compared to the scale length of the equilibrium profile and, for ease
of analysis, we perturb a homogeneous equilibrium with uniform pressu-
re p and with lo x By = 0. As argued previously the ion motion should
not be neglected, and, as a result a dispersion equation is derived for
k perpendicular to By and_(z'_0 that is quintic in the growth rate and
quartic in the squate of the perpendicular wave number. (Details will
be published elsewhere). For k parallel to B the dispersion equation?
is quartic in the growth rate. The growth rate is close to mﬂ/( ms Te)
where Tt is the electron-ion collision time. The optimum wavelength
arises because shorter wavelengths are damped by electron thermal con-
duction whilst longer wavelengths are energetically less unstable be-
cause of the increase in the accompanying perturbed magnetic energy in-
cluded through Faraday's law. In principle the model employed is not
dissimilar to that of Furth et aZ!!, in part 111 B, C of their paper,
but they did not include ion inertia and also failed to find the opti-
mum wavelength. Similarly through neglect of electron thermal conduc-
tion (in part 11) and assuming n « Te (instead of a momentum equation)

none of the features of our equilibrium profiles were found.

V& have carried out the stability analysis for a homoge-
neous plasma for both scalar and tensor conductivity models, the opti-
mum wavelength being slightly larger in the latter. Comparison of these

optimum wavelengths with the finite amplitude mode structures found in

273



the cylindrical equilibria indicates that indeed the current filamenta-

tion and electron temperature oscillations are electrothermal in origin.
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