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We investigate the dynamical behavior of the system of N
equal-mass distinguishable hard particles confined in a one- dimensional
box of length R. The collisions amongthe particles and the collisions
between the particle and the wall are assumed to be elastic. By introdu-
cing "Mirror-Image" transformation and by using distinguishability ofthe
particles, we are able to obtain the analytical solution in Newtonian
sense. W then study the possible ordering of different col lisions for
N =2 case. Finally, the equilibrium distribution function has been de-

rived and from which some statistical quantities have been calculated.

Investigamos o comportamento dindmico do sistema de N parti-
culas duras, distinguiveis, de mesma massa, dentro de uma caixa unidi-
mensional de comprimento R. As colisdes entre as particulas e as coli-
sbes entre particula e parede sdo supostas eladsticas. Introduzindo a
transformacgao "Espelho-Imagem” e usando a distinguibilidade das particu-
las, nos é possivel obter a solucdo analitica Newtoniana. Estudamos en-
tdo as ordens possiveis das colisdes diferentes para o caso N = 2. Fi-
nalmente, a funcdo distribuicdo de equilibrio é deduzida e algumas quan-

tidades estatisticas sdo calculadas através desta.

1. INTRODUCTIQN

In ergodic theory!, we are interested in the qualitative be-
havior of classically mechanical systems and of simple physical systems

(models), which may through tight on some fundamental problems such as
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irreversibility in statistical mechanics. However, it is well knownthat
no indication of how systems approach equilibrium can be obtained iner=
godic theory. In order to do so, the solution of the system must be
known in Newtonian sense. In this paper, the Newtonian solution of the
bounded system of N equal-mass distinguishable hard particles will be
studied with the hope that the time evolution of a given initial distri-

bution function can be calculated explicitly in the near future.

The boundary effects due to walls have been treated without
any approximation by "Mirror-Image' transformation. Therefore, we first
of all clarify the ided of 'Mirror-Image' method, step by step, in Sec-
tion 2. In Section 3,we show that the motion is equivalent to a straioht
line in N-dimensional torus with suitable coordinate system and we ob-
tain an algorithm from which the positions and the velocities of N e-
qual-mass distinguishable hard particles can be determined from their
initial values. For ¥=2 case, the possible ordering of different colli-
sions of an arbitrary trajectory is analyzed, both qualitatively and
quantitatively, In Section 4. Finally, with the help of results in the
previous sections, we are able to derive the equilibrium distribution

function and to calculate some statistical quantities in Section 5.

2. THE MIRROR-IMAGE TRANSFORMATION

In thermodynamics, we usually deal with the systems having
definite boundaries {including impenetrable walls) One often neglects
the wall forces, either by assuming that the system has infinite extent,
or by assuming the so-called periodic boundary conditions2. The perio-
dic boundary conditions may be regarded as an approximate way Of dea-
ling with the boundary effects, valid for the large systems (for which
the boundary effects are likely to be unimportant anyway) . However, the
boundary effects do play an important role for the systems Wwith only a

few particles, and hence these effects cannot be neglected.

3 can ta-

The periodic boundary conditions introduced by Born
ke care of the hard wall potentials completely (with no approximation).

We clarify this by considering the simplest conceivable bounded system:
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one hard particle in a one-dimensional box of length R The Hamiltonian

is

2
H=%+V(q) 0<qg <1, m

where the wall potential Vw(q) is infinite whenq =0 or R and zero
otherwise. From Newton's first law, this hard particle will move line-
arly with constant velocity until hitting the walls, and then bounce
back and forth between the walls. By considering {7 (0), »(0)) as the
initial conditions, the motion can be represented by the zig- zag line
XOP(Xb =4 (0)), with alternating slopes +p{0), as shown in Figure 1.
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Fig.1 = The zig-zag motion X P of one hard particle in a one-dimensional
box of length & and its image XOQ in a one-dimensional torus of length

24, with the coordinate from zero through R than back to 0.

The basic idea of Born in that we can obtain exactly the sa-
me motion by imagining that whenever the hard particle hits the wall, it
simply passes through the wall and at the same time, another hard par-
ticle enters the wall with the same velocity but in the opposite direc~
tion. This can be achieved by replacing the hard particle with the ini-
tial conditions (g (0), »(0)) by an infinite set of freely moving hard
particles with the initial conditions (qn(O), vn(O)). The following re-
lations (for the detail, see Born3)

2n8 +q{0) , v, (0) =v(0) ;

Q
N
X

—
[=)
W

2n

(0) =2me - ¢{0) , (0) = - v(0) ,

Y2 ne1
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n being any integer, must be satisfied. Here we have assumed that the
O-th particle is the original particle orgg{0) =4 (0) and v,(0) = »(0).
The above relations can easily be obtained directly by considering the
walls just as perfect reflecting mirrors and by collecting all the ima-

ges of the point { (0), »(0)). In doing so, the Hamiltonian (1) becornes

= n
H1 = _E e (—°<<a_,z<°f) (3)
n—-—&
and the initial conditions of hard particles are (qn(o), Un(o))' Thus

the wall potentials have been rernoved completely.

For later convenience, we consider the walls as perfect mir-
rors which reflect the coordinate system, instead of the point ( q(O) s
p{0)) as Born does. The configurations space then becornes a one~dimen-
sional torus of length 22 with the coordinate system, from the origin
through @ than back to the origin (or 2%), as shown in Figure 1. Now we

define the '"Mirror-Image' transformation as

lz] =s (@)2 + rlx) ;e < g <« (%)
heres (x) is zero or positive integer and 0 € r{x) €2 ,

r(x) fors (x)} being even,
and (5)

Q
Il

g =R - »{x} for s(x) being odd.

The Hamiltonian (1) then becomes after the above "'Mirror-Ima-

ge'" transforrnation

(6)

[Se]
i
SAN

with the initial conditions (g{0), v»{(0)). Hence the motion is a straight
line XOQ as shown in Figure 1. More explicitly, by substituting the dis-
placement x(%) = g(0) + v(0)% of the hard particle for x in Equation (%),

the Newtonian solution can be written as
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q(t) = »(x(t)) v(#) =¥ v(0)
and {(7)
q(t) =& - rlx()) (%) v(0)

L}
]
I

[}
+1

L}

for s(2(2)} being even and off, respectively. The upper and lower signs

are valid respectively for z{(¥) 2 0 and z{t) < 0.

Let us now consider the bounded system of ¥ equal-mass indis~-
tinguishable (non-interacting) hard particles. We suppose that the Hamil-

tonian is

=3

p;

{

“rom T

i B~1
Slv‘l\;

’L (2

) ], 0go.2¢ (8)
T |
J

and that the initial conditions of the hard particles are (g.(0)),v.(0)).

This system has been studied by hobson and Loomis* and Cheng® by using
Born’s periodic conditions. Now, we put the above '"Mirror-image' trans-

formation into more general form:

i(L'.I = 9(&77:)2 + I’(.’X,"I:) -~ x < xi <« (9)

T

where s{x.) is zero or positive integer and 0 < r(mi) <R

q; = r(z,) for s{x,) being even,
(10)
q; =% - r(xz.) for s(x,) being odd
for each hard particle. After this '"Mirror-Image' transformation, the
Hamiltonian (8) becomes
N 2
. )
ALY = 1=1 Zm

Therefore, the motion is a straight line in a F-dimensional torus with
the coordinate from the origin through R then back to the origin {or2s)
for each dimension. For the case N=2, a typical trajectory is shown 1in
Figure 2{a). Furthermore, by substituting the displacement X, (t) =
= q;(0) +v.(0)t of each hard particle for @, in Equation {9), the New-

tonian solution can be put into the following forms:
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Fig.2 - (a) A typical trajectory of two indistinguishable and (b) of two
distinguishable hard particles in a two-dimensional torus with —- and

—»~ stand for the coordinate axises of two hard particles.

q,(t)

r(x,(¢)) v (8) =+ v.(0) ,
(12)

"
+1

q;(8) = 8 = rle () v.(2) v, (0)

for S(mi(t)) being even and odd, respectively. Here the upper and lower
signs are respectively formi(t) 2 0 and xi(t) < 0. In the .next sec-
tion we will use Equations (9), (10) and (12) for the bounded system of
N equal-mass distinguishable hard particles.

3. THE NEWTONIAN SOLUTION

For the bounded system of N equal-mass distinguishable hard
particles in a one-dimensional box of tength R the Hamiltonian is in
the following forms



2
i
1 m

) VH(q VR (13)

N
)
1,4=

5

'i'VW(qi) + . 29
where the hard pair potential VH(qi"qj) is infinite for a;>9; (i< )
and zero otherwise, and VW(qi) is the wall potential. Here we have as-
sumed that the hard particles are distinguishable and have assigned
each hard particle a positive ir‘xteger (1 through #) according to its
initial position q,(0); < < 4 if and only if q;(0) < qj(O) .  The hard
pair potential VH(qi’qj) will keep this ordering (distinguishability)

for all time £, or

qi(t) < qj(t) if and only if q,(0) < qj(O) . (14)

After the “Mirror-Image" transformations (9) and (10) , the Hamiltonian

(13} then becomes

N ,_D2 N
H o= Y =2+ Y V,(q.,q9.) . (15)
D, ply Tm g Gy BTN

Therefore, the wall potentials have been removed completely as we did
before for the bounded system of N equal-mass indistinguishable hard
particles. From now on we only have to study the effects ofthe hard po-

tential VH(qi,qj) or the collisions among the hard particles.

It is well known that when two equal-mass hard particlescol-
lide, the hard pair potentia}l VH(qi’qj) can only exchange their veloci-
ties. Therefore, their motion will be straight lines by exchange their

assigned numbers right after the collision. In other words, we have

§ — , — 16
p=a; and qy=q; , (16)

q
where ' stands for the coordinate right after the collision. For later
calculations we achieve the same goal by exchanging their coordinate a-
xes: W actually divide the configuration space (N-dimensional torus
having the coordinate from 0 through R than back to 0 for each dimen-

. . N . . o
sion) into 2 (N!) regions (see next section) by the collision surface
SN = {(ql,qz, ey qN)f at least two of a; are equal or at least one

of g, is zero or R (£ =1,2,..., M} Actually, each region represents
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a momentum state. Now, it can easily be seen that the motion of our sys-
tem is a straight line in the configuration space mentioned above. For

the case N = 2, a typical trajectory is shown in Figure 2(b).

With the help of the previous results, we are able to obtain
the Newtonian solution; the dvnamic state of the systern can be predic-
ted from its initial state. More explicitly, giving their initial va-~
lues, the positions and momenta of & equal-mass digtinguishable hard
particles for any time t can be determined by the following algorithm;

(1) calculate the displacement, xi(t) =qi(0) +v.(0)¢, for
each hard particle,

(2) calculate the position Q’7:(t) and the velocity v{(t) by
using Equation (12) for each hard particle,

(3) rearrange qi(ﬁ) {Zz =1 2, ..., & in the increasing or-
der and reassign a new integer i' (1 through ¥) according to this new
ordering (due to distinguishability),

() write down the position g ,{t) and the velocity o ,(%)

|
for each hard particle.

In principle, we solve the problein for any integer #. From
practice point of view, the above calculations can be carried out with-
out much difficulties for quite large integer ¥, by wusing the modern

electronic cornputer.

4. ANALYSIS OF COLLISIONSFOR N = 2

It is well known that there exists another integral of motion

N
jo
o= 1 IH ) (7
i,d=1 ¢
besides the energy
I 2
ps
7
E/V Z 2m (18)

=]

for Harniltonian systern {13). Equation (18) represents for a (¥-1)-dimen-
sional surface of a F-dimensional sphere of radius 2mE,. It can easily

. . . N .
be shown that the intersection IN(] EIV’ at most contains 2 (¥}!) points
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in the surface EIV' In other words, there are at most 2N(N!) allowed mo-
mentum states (depending on the initial momentum state) . As we already

know, the configurations space becomes
CN={(ql,q2,...,qN)| 0 5qy¢ ...SqNSJL} (19)

due to the hard pair potential VH(qi’qj)' Therefore the motion should be
restricted to the reduced phase space, PN = CN ® (INH EN). More expli-

citly, the motion is a straight line in the reduced phase space PN'

For the case N=2, the intersection Izﬁ E, consists of eight
points (v,(0) # »,(0) are assumed), labeled from 1 through 8 in E, as
shown in Figure 3. Thus the reduced phase space P, can be represented by
Figure 4, in which the integer assigned to the region corresponds to the
same momentum state as in Figure 3. The arrows —* and — stand for
coordinate axes of g, and g,, respectively. The trajectory is a
straight line in P, and its inclination depends on the ratio of vl(O)

and v, (0) .

For later convenience we classify the different collisions by
its momentum states before and after the collision. Thus the <collision
Ci-—j (i,4=1,2,...,8) stands for the collision with the momentum states
# (before collision) and 7 (after collision). Let us restrict theinitial

momentum state to be state 1; p,{(0) » 0 (or v,(0) 3 0), p9(0) ¢ 0 f(or
v,(0) 5 0) and |p,(0)/p,(0)]| ¢ 1. To do this we note that we only con-=

<

| Py

iy

Fig.3 - The energy surface |, in the momentum space and the possible mo-
mentum states in a single trajectory.
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A

Fig.h - A typical trajectory with the initial momentum state 1

(- #/%h <5 <0) in the reduced phase space P,.

sider the trajectories with the inclination & such as -n/4 < ¢ 0 (in
the region 1), which implies that only some of the collisions Ci-j can
happen.

Since the trajectory is a straight line as shown in Figure 4,
we have no difficultyto determine the collision C;l—j whenever the tra-
jectory hits the collision lines (AB, AC, BC, BD, EF and GH) andthe col-
lision vertices (B, F, G and K). For instance, as the trajectory hits
the vertex F {or G), it means that the first hard particle collides with
the left wall when the second hard particle collides with the rigt wall.
The momentum (or velocity) of each hard particle is reversed right after
the collision. Hence the collision at vertex F and G is respectively 05_]
and 06-2' In simillar arguments, we can show that the collision at ver-

tex B and K is 03_7 and 08-14’ respectively.

After careful analysis, the possible collisions and their
orders in a trajectory are shown in Figure 5. There exist only sixteen

different collisions, which in turn make ten groups of collisions;
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Gg = Cr-6C6-2 Gg =Cy 505y »
¢y = C1-6%-7"7-2 > Gg = (5051001 »
G2 = 1-6%-3¢3-2 > Gy = Cy505-gCg-y (20)
G3 = C16%-303-757-2 > Gg = Cp.5C5-8C8-1Cy-1 »
Gy = C5-505-808-767-2 > Gg = C1_gl6-3C3-10_1 -
ch-’Z CS—’I
r 05»7 '_’ C7-.2 14 Gz-.s 05-»4J. C4——| > 4 Cn»s .
> Cs-.| e . —
G .M NG cs-;sl“’ cs——g" 64;1" cl—:s. )
chTcs,nc“.vc.w N Ggr P cm}w
$GCs.r r‘c7—'>2A —ly cz‘—é;s '

Fig.5 - The possible collisions and their orders in a single trajectory.

For the trajectory with the initial momentum state other than 1, we only
have to wait a finite time until it reachs the momentum state 1 and ap-
ply the above results. Therefore, the trajectory can be represented by a

sequence of GO’ G],...,G9 which satisfies the following rules;

(M Gy, Gy» Gy» G5 and Gy can be followed by Gy, Gg, Gg» ¢,
and GB’ and

G,, G

2) GS’ G6’ G G8 and G can be followed by ¢G,., G 2 Gy

7’ 0* "1

and Gg'

According to the Jacobi's theorem® the motions are ~periodic
of period T = 2n8/v,(0) if and only if

n .
._(_)U 0 =% ] (21)
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is rational, otherwise, the rrotions are ergodic. |f the motion is ergo-
dic, then the trajectories are dense everywhere inthe reduced phase spa-
ce P, and can pass through the vertices B, F, G and K only once for all
time ¢; the corresponding groups of collisions GB’ G5, G0 and GS can ap-
pear at most once. The conditions for the above mentioned vertex-passing

motions are respectively

v1(0)  q4(0) - 2(n+1)2 v,(0)  q,(0) - 2(m1)2

v, (0) i q,(0) + 2me v, (0) i q,(0) + (2me1)1 ’
(22)

v (0)  7,(0) - (2neD) e v, (0), ql(O) - (2n41)2

2y(0)  a,(0) + 2mt 2,(0)  q,(0) + (2ms1)e

for some integers n and m. Since the initial positions and momenta sa-
tisfied Egs. (21) and (22) are of measure zero, alrnost all trajectory

then can be represented by a sequence of G], G2, G1+’ GS’ G7, (}9 which

satisfies the following rules;

(1) Gy, G, and G, can be followed by Gy, Gg and G, and (2)
Gg, G7 and G9 can be followed by G‘, G, and Gg.

In order to ohtain Newtonian solution, we also need to know
the dates of all possible collisions. For later calculations, we  now

classify the different collisions in classes by their collision lines ,

1.e.
Cag = (Cg-70 O30} Cac = 101 Cougt o
Coe = {Cimysr Co_gh s Cop = 1Cquys Cgog} s (23)
Cep = (Cc_yys Cg 1y Coy = (Cgoz0 Cypd

We may consider that each collision line is a set of parallel lines and
the trajectory is a straight line in the reduced phase space P,,. There-
fore, two nearest collision points on each collision line are separated
by equal distance and equal time intervsl. In other words, on the one

hand, the motion is equivaient to a rotation along each collision line,
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while on the other hand, the time interval between two nearestcollisions

of the same class is constant. Moreover, we have:

Theorem 1: The time interval between two nearest collisions

of the same class is equal to (a) btpe = 21/(‘01.0 - 7)2_0), (b) 8ty

_ ; _ - A, = At -
=20/(v, (to, ), (Q by = btg =20/, and (d) Aty -
=-2£/v2’ (vl,D = vl(O) and vz’

= v,(0)).

0 0

Proof: It is evident from Figure L4 that the time interval bet-
ween two nearest collisions of CBC (or CGH) and of CAB {or CEF) are res-
pectively equal to the time it takes for the trajectory in movingthrough
distance @ horizontaily and vertically. We obtain the results (c) and

(d) since the trajectory moves with the velocity v, ( }  horizon-

v
;0 2’0

tally (vertically). For two nearest collisions of C,., we assume P and Q

to be the corresponding collision points. Drawing /t\ﬁe lines PR//EF and
GR // GH, we then have PR = QR. The trajectory moves through PR horizon-
tally (te the right) and 22 - QR vertically (downward) during the time
interval At,., or V1o bt =R and vy btpe =R - QR. Ve obtain
(a) by eliminating PR and QR. Since AC | BD, we can obtain (b) by rota-
ting the trajectory 20 deyrees to the line PS and by applying the same

arguments as we did for ubtaining (a).

Now, we consider the collision line AC as the surface of sec-

tion’ and investigate the motion of the points on it. We then.have:

Corollary: The motion is a rotation with angular velocity

/2

J 2v vZ o+ p?
0=vir {1+ 2,0 + L0 220 5 (24)
l v - v (v -v_ )

1,0 250 1,0 250 ;

around the circle AC.

Proof: From Theorem 1, the distance between P and Q can be

written as

1= R + T2



(25)

Therefore, Equation (24) has been proved since the circumference of the
circle & is 2/2% (2m degrees).

The trajectory is dense everywhere on the circle L if and
only if the ratio of 0 and 27 is irrational. From Equation (24}, it is

obvious thatthisdependsontheratioofv1 andv2 0 Beingirrational

’

0
’
or not as we expect.

Theorem 2. If the motion is ergodic, than the probabilities

of appearing G, (¢ =1,2,4,6,7,9) along the trajectory are

Y2 ¢
(a) P(Gl) = P(Gz) = P(GG) = P(G7) = - )
2(—01,0-1)2,0)
and (26)
D F)
(b) P@,) =Pley) = —L22 “2,0
Z(UI,O - 1)2’0)

Proof: Let us draw the lines BB' and GG', which are parallel
to the trajectory. From Equations (20) we see that which one of a,, Gz
and G9 will appear depends only on-the collision point along A as shown
in Figure 4. For instance, Gl will appear if the trajectorypasses through
the points between the vertices A and G'. Since the trajectory fis dense
everywhere along the circle AC the time average is equal to the ensem-
ble average. . In other words, the probabilities of Gys GZ aid (_}9_ depend
on AGT, G'BY and B'K. Since AAGG = AABB, we get AB/AG = AB'/AG' and AG'
= G'B" or P(G]) = P(,). From one of Equations (22) (corresponding to the
vertex ) , we obtain q;(0) :q2(0) = - vZ,O/(v],O'UZ,O)(" =landm=20)
and AG' r /Z_QI(O). Ve then have B'K = v2% - (AGY + G'BY) = V22 (vl’

02,0)/(1’],0 - v2,0)' It can easily be seen that C, ,
=p

0 +

and C8-7 should ap-

pear with exactly the same probability, or P(Gh) (G9). With similiar



arguments, we can show that P(G]) = P(G6) = P(G7). Finally, we obtain the

results (a) and (b) by using the normalization conditfon of P(Gz).

In principle, the Newtonian solution can be determined by cal-
culating the first date of the collision of each class and by dividing
from that .point the time axis with the time interval of two nearest col-
lision of that élass as unit. However, we are not going to discuss this

method here in detail. We prefer the method mentioned in Section 3.

5. EQUILIBRIUM PROPERTIES

Since the trajectory is a straight line in the reduced phase
space Py, we are able to show the the motions of N equal-mass distin-
guishable herd particles in a one~dimensional box of length £ are ergo-

dic if and only if

k=0 imply % (27)

it
(=]

where B = (v,(0), v,(0), ..., vy(0)) and & = (X}, k,, ..., kp) (k. being
integers) from the Jacob's theorem. Therefore, our dynamic system is

ergodic but not mixing.

As we know that the time average is equal to the ensemble a-
verage for any ergodic system, we can easily show that the N-body equi-
librium position distribution function is

2. P =
Q15 dos = e qN’-b) E— ;N s (28)

here and for later calculations the restrictions 0 £ g, € q, £ qy % 2

have been used. We then can obtain

o ay Tree % 9
<qp> = ;W JO qu Jo qu_] ..JO 93,943, Jé dqg, 1 -+ JO dq1
_ kg
‘m s (29)
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vt e & 72
‘B> = j dq[V . j qmdqm .. J qkqu... J dg
L 7o 0 0 0 !
ka2 gy (30)

(7+1) (W+2)
and

L (W-m+1) 22
(7+1) 2 (W+2)

QA>T <qp><q> = (31)

As N » =, we have d,> T A>d,, > for any % and rn, thus the posi-
tions of any two hard particles are statistically independent f{or un-
correlate) as we expect. If the initial velocity distribution function

is in the Gauss form . -\
¥y (v,

f ]

i 1 20

0) = . 2

! l\ ‘-/:‘!T'J} 7= ¢ (32)

=

Plo., v

12 Yo e Y

where 137: and o are respectively the average velocity and its standard
deviation of Z-th hard particle. The equilibrium velocity distribution

function then becomes

N
= |
(2

P(Ivl’h)z" vy |U!:t) sue———
! l ¥ 2nw)o
332 - )2
; J ) (vi v.) i (v1:+7, .)
2 2
i e 2o + e 2o (33)
i,d=1 | J

for the hard pair potential VH(qi’qj) can only exchange the velocities
among the hard particles. Equation (33) means Gauss distribution with
the mean velocities £ . but not a Maxwell distribution. Hence the po-
tentials VH(qi’qj) and Vw(qi) are not enough to obtain the equilibrium
distribution function of an ideal gas. Works are in progress for the

time evolution of the distribution function.
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