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The statistical mechanics of systems subject to constraints is
discussed. For integrable constraint Dirac's method to deal with singu-
lar lagrangeans is introduced and a hamiltonian is obtained. From this
hamiltonian the phase-space Fokker-Planck equation and the diffusion
equation are derived. Another derivation for the diffusion equation is
proposed which makes no use of Hamilton's formalism and that may, the-
refore, be applied both to integrable and non-integrable constraints
which preserve volume in coordinate-velocity space. The existence of a
diffusion equation for non-integrable constraints and possible analogies

to quantum mechanics of similar systems is discussed,

£ discutida a mec3nica estatistica de sistemas sujeitos a vin-
culos. Para vinculos integraveis o método de Dirac € usado para obter a
hamiltoniana da qual a equagdo de Fokker Planck e de difusdo sdo obti-
das. Uma outra derivagdo da equagao de difusdo é proposta sem fazer uso
do formalismo hamiltoniano e que pode assim ser usada tanto para vincu-
los integraveis como ndo-integraveis desde que o vinculo preserve o vo-
lume do espago coordenada-velocidade. £ discutida a analogia entre e-
quagdo de difus3o e equacdo de Schrodinger 3 luz da existéncia da equa-

¢30 de difusdo para vinculos ndo-integraveis.
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1. INTRODUCTION

The most elegant and compact way of studying statistical me-
chanics is based on the hamiltonian formalism®. A probabilistic inter-
pretation of the dynamical process is introduced by means of Gibbs en-
sembles, assuming a construction were a large.number of copies of the
same system, under identical macroscopic conditions, are idealized each
one corresponding to a point in phase space, the statistical ensembleis
then specified by the distribution function which represents the pro-
bability density occupation of the distribution of systems inphase spa-

ce.

The possibility of introducing such a distribution function is
based on Liouville's theorem which proves that the volume in phase spa-
ce corresponding to a collection of points obeying Hamilton's equations
remains constant during the motion of the system, In other words, the
motion of the phase points describing the statistical system behaves as
an incompressible fluid and the distribution function is constant along
the phase trajectofies. As a consequence of this theorem one obtains

Liouville's equations for classical systems*
9
L~ m,p

and for quantum systems one replaces {,} by I/ﬁz[, ]. Here f is the
distribution function, H the Hamiltonian of the system and [, ] the

commutator.

Liouville's equation is essential for the construction of
equilibrium and non-equilibrium statistical ensembles, It has the form

of a continuity equation is phase space.

When differential constraints are imposed upon the mechanical
system several difficulties are easily detected. In general, the hamil-

tonian formalism breaks down. {f the constraint equationsare integrable

* By {#,f}, is understood the Poisson brackets as usually defined p.Ex.,

in H.Goldstein, Classical mechanics, Addison Wesley (1973).
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one may apply Dirac's method to deal with singular lagrangeans and the
hamittonian formalism is recovered. The problem, in this case, is trac-
table by Liouville's equation by the use of Dirac's hamiltonian. If, on
the other hand, the constraints are non-integrable the Lagrangean forma-
Tism is inadequate, as we have shown in reference (2), and the whole pro-
blem of doing statistical mechanics has to be reanalysed. From the me~
chanical equations of motion one may compute the change in the volume
along the trajectory of the elementary volume in the coordinate-veloci-
ty space. If this volume is conserved, then equilibrium may be defined
through the constants of the motion of the system, such as the energy,

and evolution equations may be derived.

The purpose of this work is to study the statistical mechanics
of constrained systems. In the next section we shall discuss the appli-
cation of Dirac's method to constrained non-interacting particles. From
Dirac's hamiltonian, Fokker-Planck and the diffusion equations are ob-
tained in section 3. The diffusion equation obtained is very similar to
the Schrgdinger equation for similar constrained quantum mechanical sys-

tems.

insectiont we proposed a way to derive the evolution equation
for the distribution function directly from the newtonian equations for
the particle trajectories. As no lagrangean or hamiltonian formalismare
invoked, we are able to extend the method to non-integrable constraints,
whenever the coordinate-velocity elementary volume is preserved along
the trajectory. |In the limit of very small relaxation times adiffusion
equation is obtained which agrees with the one obtained in section 3for

integrable constraints,

In the conclusion we discuss the results for non-holonomic
constraint and the collisionless limit of the theory. We compare the

diffusion and Schrodinger equations for constrained systems.

In this work we consider only particles in the euclidean three
dimensional space subject to one constraint equation. The introduction
of external potentials or interaction among particles areeasy to be per-
formed but complicates the formalism and it does not improve the unders-

tanding of the problem.
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2. DIRAC’'S HAMILTONIAN FOR SYSTEMS WITH CONSTRAINTS

Consider a free particle subject to the differential constra-

int
a.g.=10 (2.1)

We may assume, without any loss of generality, a, as the components of
- -> . - . °
the unit vector a, what is equivalent to say that a; dqi is non- singu-

lar.

If the constraint equation is integrable we may derive the e-
quations of motion for the particle from the variational principle, as

discussed in reference (2).

The procedure we are going to adopt here is the same as that
of reference (2) and we summarize it here to make this work self-conta-
ined. We assume in this section that the constraint equation 1is inte-

grablie.

Let us define the lagrangean

L=’§(Z)2—>\a-3, (2.2)

where A, the usual Lagrange multiplier,is considered as the fourth co-
ordinate of the particle, m is the mass of the particlie and 3 its co-

ordinate.
It is easy to show that the Euler-Lagrange equations for such
a Lagrangean are

m ﬁi = - ai(aaj/aqn) éj én (2.3)

and

These are the correct equations of motion and constraint as

they agree with those derived from D'Alembert's principle?.

The Lagrangean given in eq. (2.2) is singular since it is in-
dependent of A. Thus the momentum Il canonically conjugated to X must va-

nish in the weak sense:
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=0 (2.4)

This equation must be valid at ali times and is called by Di-

rac a primary constraint?.

We may now construct the hamiltonian in the usual way by de-

fining
- 3L
by, =
aqi

The hamiltonian thus found is, nevertheless,not uniquely defined and we
may add to it a linear combination of the primary constraints, in our

case just II. We define

@)2 A2 ap
HD=H—un=-.l’__+—+A—2-un. (2.5)
m 2m m

The quantity u can be any function of the g's and p 's, é 's

and A. in principle u is an unknown function.

We now impose that T must be zero at all times
= {m JHp} = 0 (2.6)

and using #, given by eq. (2.5) we have
a,p,+r =10 (2.7)
7 1

This is another constraint called a secondary constraint. It must also

be zero at all times, therefore

Bai D. aj Aat Baj
lap; *A’Hp}zﬁqui [_m_+T] -T'ﬂripg -u=10

(2.8)
The .above equation determines the function u,

da.
L

1
¥ tnag.

p; P

Now the problem is completely solved. We have the hamiltonian Hb plus the
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constraints given by eqs. (2.4) and (2.7). Since T and X form a pair of
canonically conjugated variables we may eliminate them in Hb by the use
of eqs. (2.4) and (2.7). We are left with

H* = (2.9)

]
—2;”-Q747 p; Pj s

where @.. = 6ij - a, aj is the projector on the plane perpendicular tothe

vector a.
H* is the hamiltonian to be used.

Notice that the constraint eq. (2.1) is automatically satisfied

as, from Hamilton's equation, we have
%=EQupu (2.10)
and therefore a; &i = 0. The function H* is also the energy:

i 4z 95 - (2.11)

E =

[(NE]

We shall show, for completeness, that H* leads, indeed, to the

correct equations of motion for integrable constraints.

From eq. (2.10) we obtain

ap
. . . . R-— R; .
d; =~z aaj/aqk a5 9 + %4y, [_ = )(Bai/aqk - Qij Bak/aqj) 9

(2.12)

We now show that the last term on the right hand side of eq. (2.12) isze~
. . . Lo > ->

ro for integrable constraint, i.e., if a rot ¢ = 0. Let us assume we are

., f.e., a

J 3

in a system of coordinates that diagonalise Qi
Then §3 =0, as Q}i = 0 and the normalization of e impose that 3a3/8q£=f.

=] and ay=a,= 0.

Now

da,/3q;, ~ da,/3q; = +(rot 3)3 = #q,(rot 2)3 =0
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This proves that for integrable constraints the equations of motion obtai-
ned by Dirac's H* are equivalent to those derived by the D'Alembert's

principle.

To conclude this section we summarize the results obtained thus
far. If the constraint equation is integrable we are allowed to use la-
grangean formalism to obtain the equations of motion form the variatio-
nal principle. The Lagrangean is, nevertheless, singular and we must ex-
tend the hamiltonian wusing Dirac's prescription for consistency. We fi-
nally found, a hamiltonian #* which correctly describes the motion of the
system. We may now proceed to discuss the statistical mechanics of cons-

trained systems.

3. FOKKER-PLANCK AND DIFFUSION EQUATIONS

In this section we obtain, using Dirac's Hami 1tonian, the Fokker

-Planck equation and then the diffusion equation for corstrained systems.

Consider a particle immersed in a liquid. To calculate themotion
or, in general, the correlation functions for the particle, we build an
ensemble made out of a very large number of similar particle plus liquid
systems. The average motion (and the correlation functions) of the parti-
cle is the average calculated over the ensemble. Ifone neglects short time
effects, the first and second momenta Vinvolving Aqi and Api can be appro-

ximated using Langevin's equation.

Besides the canonical equation of motion we introduce a viscosi-
ty X and a stochastic force Fi for which we assume a white spectrum and

Zero average
<Fi(t)> =0

<Fi(t)Fj(t‘)> = 2K éij §(z-t")

The moments are, to first order in At .

3
<y .> = —— A
2 P
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<Aq7: AQJ> = <Aq7; Apj> =0 (3.1) .

=ar -2 X, -
<Api> = At Sq; q; + <F$> =
Ya,;
= - Af [iH.—.;._._E}
aqi m
<Api Apj> = 2K Gij At

where vy is the viscosity,

If we introduce the hamiltonian obtained in section2we are left

with the following equation for the first momentum <Api>

a.

<AP,L°> = At [-”71& aaj/aqi pk pj = Y/m Qij pj)

We are now able to derive the Fokker-Planck equation in phase

space for the constrained system which is,

. P -9 _
= im g - (<ep6) %y (<bp,> €) +
A0 v
32

1
F o ——
2 Bpi Bpj

Q..
S S ) -
(<Api Apj>G)} = "3 [ . G]

a, 9a.
8 (&% 3 [x )
%, ( /% PPy G] * o, (m %;P; 6t
g ' (3.2)

+ K
Bpi Bpi

We may check the correctness of the above equations if we take
. . > > > - > >
the limit v = D = 0 and ¢(q,p,0) = §(q - q,) 8(p - p,), where ¢, and p,
are the initial coordinate and momentum respectively. Substituting the abo-
ve ansatz in eq. (3.2) we arrive at the correct equations of motion, eq.
-(2.10) and (2.12}.

It is easy to verify that the distribution function
B s
G,(3.8) = £0(@) exp(-va,; pp /o) (3.3)
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is stationary solution of the Fokker-Planck equation, where ¢(g) = cons-
tant is the equation for the constraining surface and, therefore, a, is
proportional to 3¢/qu. The function f is arbitrary what means to say
that the space is separable into disjoints classes of points lying on the

surfaces of constant ¢. The normalization factors are included in f.
The temperature of the bath is given by kBT = K/ym.

-> > .
Notice that the component of p paraliel to a does not appear inH
and shall not appear anywhere in the calculations. Thus, when normalizing

G, and G we may integrate this component independently let us say, from

- to .
p30 pezo

To obtain the diffusion equation we shall use the projector tech-

nique®. We define a projector 4 such that
A¥(q,p) = 6,(q,p) f a* P ¥(q,p)

what this projector does is to project on the thermallized state of the

particles.
Define the projector B as the complement of 4

A+B=1,

and the coordinate distribution function g(a,t) from the application of

the projector A on the phase-space distribution function
4 G(3,3,8) = Go(2,2)9(2,2) (3.4)

We may now decompose the differential operator which appears on

the right hand side of the Fokker-Planck equation into two operators

3G

5 = (fy +T,) G
where
3 3 % Pj Pr
Fl = —5—@ Qij pj/m Wg (Baj/BCli) - (3.5)
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and

Y x 9
r = (m ng p;+ 3Pﬁ) (3.6)

it is easy to show that T'j and I'; obey the following equations

L}
<

(T +T) ¢
0 1 o

(3.7)

h
—
=N
1]

<

rr
01 Go g

i
t
3=
€D
g ]
Q

Now the equation for g(g,t) is easy to obtain using the proper-
ties of 'y and T, shown in eq. (3.7},

giAG) = (AT, +4T) (AG+ B0 (3.8)
giBG) =(BTy+BT,) (AG+BG)

r, (4G+BG) +BT BG. (3.9)
Assuming we started from an initial G such that
B GG, B, 0) =0 (3.10)

what means that locally we have themal equilibrium. (This restriction
simplifies the calculations but is not essential since, if it is not sa-
tisfied, we are left with a memory of the initial distribution which is

exponentially damped.) Eq. (3.9) may be solved directly giving

t
BG = f dt' exp B(Ty + Ty)(¢-¢') BTy 4 G(¢') . (3.11)
1]

If now g is a slow varying function of 3} varying very little

for a distance equal to the mean free path, we may keep only the lower ex-
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pansion on Fl and we are left with the following solution for eq. (3.8)

after substituing of BG as obtained from eq. (3.11),

t
We) 4, [ exp {(=y/m) (t=t"} T, 4 6(q,5,£"dt’ (3.12)
0

The factor v/m in the exponential comes from the last relationin
eq. (3.7) and it can be understood as the inverse of the timenecessary to
thermalize the system locally. This time is expected to be much smaller
than the relaxation time for g and, therefore, we may integrate eq.(3.12)

by taking G(gq,p,t) outside the time integral. This gives

g _ My 2
i Y 4T g
and, finally,
glg,t) _p2 o 2 2 (3.13)

3t 3q, 4 8qj

where D = k/2y? is the usual diffusion coefficient. As we stated before

the temperature of the heat bath is given by
kgl = K/y

and thus

A ]
L§

kBT/ZY .

which is usual expression for the diffusion coefficient.

4. THE DIFFUSION EQUATION

In this section we propose another derivation of the diffusion
equation, directly from Newton's equation, . no use being made of the Ha-
miltonian formalism, A collision time and also a relaxation time are as-
sumed so that relaxation effects come out naturally from the evolution e-

quations.

We assume that every particle has a probability of collision in

the interval ¢,S¢ St + 1, given by To/T < 1 and that after a collision

0
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the particle is thermalized, i.e., it forgets its velocity prior to the
collision and leaves the collision with a velocity distribution given by
the thermal equilibrium distribution function. Consider a particle rea-
. . . - . > . .
ching a point in coordinate-velocity space (g,gq) at time ¢. It has either
suffered no collisions since the initial time t=0 (and thus moves follow-
ing the mechanical trajectory leaving from the phase point (353') unique-

ly defined by (3,3) and t) or has suffered at least one collision.

If the particle suffered collisions it reaches the point (g, q)
at time ¢ after having suffered the last collision at time t! at the pha-
se point (3,8) determined, once again, by (3,3) and t-t' and the newto-
nian equations of motion. The probability that there was a particle atti-
me t' at the phase point (§,d) after a collision having occured is given

by the product

g@,) 6,38

where g(8,t) is the space distribution function and Go(3,3) is the ther-

mal equilibrium distribution function.

It is very easy, from what we have said above, to show that the

total distribution functions obeys the following equation

> > - 3 t >
6(3.5.8) = ¢ 7 c(3,3,0) + %J’ exp(-(£-2')/1)g(q',2") G (q',q") (b.1)
0

where (§,3,0) is the initial distribution function. The phase point (§,4)
reaches (q,q) after following a mechanical trajectory for a time and the
phase point (3',3') reaches (q,q) after a time t-t'.

Energy is conserved in the mechanical system and we may assumeas

the thermal equilibrium a Boltzmann distribution
GO (595) =4 exp(‘E(éyé)/kBT)
where kB is again the Boltzmann constant and T is the temperature.

A serious problem we have to deal with is the conservation of
probability in the coordinate-velocity space®. !f we call § a elementary

volume in such space, the equation of motion'mﬁi = Fi leads to
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. oF,
==t 0
9;

which is zero for velocity independent forces,

In the case of constrained motion we have

da

. = - ___j_ . .
5 “ Bq, G %
and thus
[ fﬁ .
Q== a; 3q¢ qj 2.

In order for the system to reach thermal equilibrium we must as-

sume that @ = 0, This corresponds to take

since 3 and 3 are independent.

The above condition, although restrictive, is valid for several
cases of interest. It is valid for motion on spheres, circles and, more

important, it is valid for a non-integrable constraint, f.e.,

> { q, 1 }
a=10, ,
Jl+q§ Jl+qf

For non-integrable constraint it is known that no hamiltonian
formalism is possible and, therefore, the treatment we propose here is,in
this case, more general than the usual Fokker-Planck equation obtained

from Liouville's equations.

We now apply eq.(4.1) for systems with constraint as was done in

section 3.

To obtain the diffusion equation we integrate both sides in daé

and assume T very small,

This leads, after changing variables t-¢' = 0, to



Ja N
> 1 t g/t S TG e _ > > 3
glq,t) ;‘j Jo e gla; +oq, -5 0 a, T a2 t 0).G,(q,q)d’q do.

(4.2)
We used the equations of motion
. o2 da. ,
G=aq;t04; "5y 55; i

to eliminate Qi'

Expanding g in its space and time arguments and assuming T very

small, we are left with
2 oa, kT kT 2
T dg _ T | a. =L g B 4+ B Q.. " g (4.3)
3% b Z qu 3¢ m m g 3q aqj
Using the fact that
a, 5, =0
we may add the term
_ 2a da 3 kBT
Ty 3q; dq; m

in eq. (4.3) and we transform it into

kT
3 ., 8B 3 _g, 2
3~ Im qu Qij qu g-

kBT
Defining D = T’ we finally obtain

9 _p3d 3
5 = P 3q; % g 9

Notice that this equation is valid in the limit of very small
relaxation time and that, in this case, the integrability of the constra-
int plays no role: it is the same equation for integrable and non-integra-
ble constraints. The only restriction is the conservation of volume in co-

ordinate-velocity space.

It is usually accepted that the free diffusion equation is a

closed analog to the Schrgdinger equation. In the case of non -integrable
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constraint this analog breaks down, since a differential equation of the
form we obtained in this section would correspond to the treatment of the

problem through a lagrangean formalism which we know to be incorrect.

Our result indicates that after many collisions the system deve-~
lops as if it was guided by the "wrong hamiltonian''. But we must be care-
ful, here, because we know that we are not allowed to apply anything like

the correspondence principle in the theory of the brownian motion.

5. CONCLUSIONS

In this work we have shown how to calculate the diffusion equa-
tions for constrained systems using two different formalisms. One has its
starting point in Dirac's formalism for singular lagrangeans and it has
enabled us to derive a hamiltonian and then the Fokker-Planck anddiffusion
equations for the system. This method is very direct and makes use, natu-
rally, of the hamiltonian formalism. The diffusion equation we have obta-
ined can be transposed directly to the Schrgdinger equation for quantum
particles subject to the same constraint by the substitution (£,D) + (it,
Ri/2m) .

The method of Dirac is correct when the constraint is integra-

ble as discussed in reference 2.

For non-integrable constraints no lagrangean formalism f{s pos-

sible and therefore no hamiltonian formalism exists.

A different derivation of the diffusion equation has been pro-
posed, through an integral equation for the space distribution function
g(g,t). In the limit of infinite collisions T+0, we were able to obtain a
differential equation for g(a,t) which is of the same form as the one ob-
tained from Dirac's method. The derivation made use of the conservationof
volume in coordinate-velocity space but it was shown that non-integrable
constraints fulfilled this condition and thus that this kind of volume

conservation was no restriction on integrability.

The differential equation obtained was of first order in time

and second order in space.
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To this equation we may derive by analogy the Schrgdinger's e-
quation which is the same as the one given by Dirac's method. As this is
valid even for non-integrable constraints we conclude that the many col-
lisions approach to the diffusion equation imposed that in this limit the
evolution of g(g,t) is comanded by what, in the non-holonomic case,we may
call the ''wrong hamiltonian'', It is a linear operator that has the same
form as if it would be derived from a lagrangean for integrable con-

straint.

It is clear that the same replacement (£,D) - (it, %/2m) cannot,
in the non-integrable case, lead to the correspondent Schrgdihger equa-
tion since for the quantum case we must satisfy the correspondence prin-
ciple and the classical limit must coincide with Newton's equation which

this hamiltonian does not reproduce.

In statistical mechanics the newtonian mechanics has tobe found
in the collisionless limit T + © , where the classical newtonian trajec-
tories provide the evolution of the space distribution function which is
the opposite limiting process for the derivation of the diffusion equat~
ion, The fact that we obtained the same diffusion equation for holonomic
and non-holonomic constraint poses no formal difficulty for the statisti-
cal approach to mechanics but points our that the analogy between Schro-

dinger and diffusion equations breaks down.
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