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A functional theory of the stochastic transport of neutrons is
presented. The new formulation generalizes the methods which have been
applied so far in order to obtain the singlet and doublet densities. The
functional approach leads to a single master equation which carries all
information on the stochastic properties of the system. Therefore, kine-
tic equations for moments and correlations of arbitrary order as well as
for probability generating functionals can be obtained in a straightfor-
ward way. All calculations are performed in continuous phase space through
the appropriate definitions of a singular transition probability.

E apresentada uma teoria funcional estocastica do transportede
neutrons. A nova formulacdo generaliza os métodos que tém sido aplicados
para a obtencdo das densidades de primeira e segunda ordem. 0 tratamento
funcional conduz a uma Unica equagdo-mestra a qual contém toda a infor-
magao sobre as propriedades estocasticas do sistema. Pode-se obterde uma
maneira direta, portanto, equacdes cinéticas de momentos e correlacdes de
ordem arbitraria bem como de funcionais geratrizes de probabilidade. To-
dos os calculos sdo efetuados no espaco de fases continuo definindo = se

para isso probabilidades de transicdo singulares adequadas.

1. INTRODUCTION

W\ propose to formulate in this paper a compact theory of sto-
chastic neutron transport, bearing in mind possible applications to some
less explored areas of research in the field of reactor noise analysis.
Although the theory of zero power reactor noise may be considered esta-

blished on a sound theoretical basis, we feel that there is still room
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for fundamental research in at least two particular areas, namely (a) a-
nalysis of higher-than-the-second order effects: high order moments and
correlations are increasingly difficult to compute but, nevertheless,
they are required in order to investigate the possibility of obtaining
new information from high order experiments as well as to obtain error
estimates in conventional second order ones; (b} evaluation of detector
effects: a more unifying approach in the treatment of detection proces-
ses is still lacking even in the framework of the point reactor one ve-

locity model.

The subject of stochastic transport of neutrons has been trea-
ted using several approaches and degrees of sophistication. Pal1ls2, ap-
pears to be the first to derive a backward transport equation forthe sin-
glet probability density of neutrons. Osborn and Yip3:* formulated a
transport theory for the singlet and doublet densities in coarse grained
phase space through a quantum statistical mechanics formulation. Otsuka
and Saito® developed a simpler classical formulation for the singlet den-
sity also in coarse grained phase space. Akcasu and Osborn® used Lange-
vin's technique to compute correlation functions of the neutron density

7 and Cassel and Williams® applied diffusion

and detection rate. Williams
and transport models to the evaluation of space-dependent effects on so-

me noise experiments.

In an attempt to develop a stochastic transport formulation
simple and compact enough to allow easy computation of high ordermoments
and correlations as well as detector effects, we have avoided using Lan-
gevin's approach since it gives a correct description of uptosecond or-
der effects only. W have chosen to use instead the forward Kolmogorov
formulation because of its inherent advantages over the backward one: (a)
the forward equation is linear; {b) an equation for the probability gene-
rating function (pgf) of the state variable can be derived for a system
with an external source (e.g., a stationary subcritical reactor); (c) the
forward formulation is suitable for the analysis of detector effects by
the method of the non-homogeneous Poisson distribution developed by Wat-
son®?1%  which requires only the computation of moments and correlations
of theneutronicstatevariable (neutronandprecursordensities). e
formulate the stochastic transport of neutrons in continuous phase space,

thus abstaining from dealing with the cumbersome coarse grained model. W\
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also avoid the unnecessary complications of the quantum statistical me-
chanics model, since quantum effects (except for those already lumped in
the cross sections) are not expected to influence the results. Further-
more, our functional formulation yields a single forward equation which
carries all information at all phase space points, in the sence that mo-
ments and correlations of any order at different phase space points can

be obtained from the same master equation.

To keep only its essential features, the theory presented is
based on the prompt neutron, zero power reactor model. Extensions that
take into account delayed neutrons and counts are sketched in the Appen-
dix.

As has been shown by Watson!!

, high order moments of state va-
riables including delayed neutron precursors are easier to obtain in ma-
trix form directly from the master equation instead of through successi-
ve derivations of the pgf. However, an equation for the pgf is obtained
here as a by-product. This may serve as a guide-line for the derivation
of pgf equations that include counts in the state variable as well (ana-
lysis of a few noise experiments still requires the approximate solutions

of these equations).

The development of the theory is carried out as faras possible
independent of the particula}- form of transition probabilities involved.
These are introduced at a later stage so that explicit equations for mo-

ments and correlations up to an arbitrary order can be derived.

2. THE PROBABILITY DENSITY FUNCTIONAL

The stochastic transport of neutrons will be formulated interms
of a probability density functional of the neutron density, position, and

velocity functions

iv: U->m!? veH
r. U+R ref

~ 'y
v UV vef

583



defined in a 6-dimensional phase space U = R xV € IR®, where R € ®® and
Vc;_le are the 3~dimensional positionandvelocity spaces. Points of

these spaces will be denoted by «, % and v, respectively, with {u}={%,v}

We tacitly assume that the above Hr and Hv functional spaces in-

clude the following functions*

2 (u)
v(w

(1)

1< 1er

Let ¢t € B! be the time variable. W consider now the functio-

nal
+
P:HxerHvlel->1R1 ,

such that P[I:v(ti) »a(u),v(u), ] will measure the joint probability density
of the state variable N(Lﬁ) at every position and velocity points fg(g) and

ulu) at time t, and subjected to the normalization
f av(w) P (w) ,alu) ,vlu),£] =1 . (2)
H pot o MAL R DA

The integral appearing above is to be performed in the functional space
H and it may be heuristicaly regarded, as has been pointed outbe Beran'?,

as a limit when na of an integral in ®r".

in the sequel, functional derivatives with respect to r{u) will
be taken at the point (function) /_g(g), as displayed in the abreviated no-

tation below

8P =[ 8 } . (3)
sn(w) | srlw) | »(w) = nlw)

Joint probability functionals at different times may also be
defined. Due to the Markovian property of the stochastic process, the dou-
blet probability will carry all information on the process. The follow-

ing relations will hold

* {n order to avoid unnecessary diversity of notation, the same simbols

for the functions and their values have been adopted in Eq. (1).
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plw,asv,t] =j an'plw,n,v, ;0,0 ,v!,¢1] (4)
y 34 <2
PW,n,v, 650" 1" v, t'] = P[F,n,vt IV, 000,27 Pt 2t v, t'] . (5)
In the above equations, all u-dependences have been omitted
for convenience.
3. THE FORWARD CHAPMAN-KOLMOGOROV EQUATION
By factorizing the joint probability P[N,Q+\_{At,y,t+At;N',l_l:,\_{,t:'
into the conditional and singlet probability, according to Eq.(5), and
integrating N', using Eq.{4), the Chapman-Kolmogorov equation is obtained
PN, n+vbt,v, t40t] = f dn'P (W, nrvAt, v, teAL B 1,0, £ PN 1,0, £) (6)
il D 4 H (el g )4 4 b4
Expansion of the conditional probability in terms of At gives
P[Wvbe, v, oede |00, 2,0,8] = (1 - Ty A2) S[0-0 4@y, Ab+0 (827, &)
where the S-functional Is defined, for an arbitrary functional F, by

jH an' (@ FE (W] sn(w - (w] = FIW] (8)

and QNN’ and I'” are shorthand notations for

QNN' = QIV((_L),IV'((_J_.) Els((!-), ‘.!.(‘.1.) ,t]
(9)

—
il

v Ty BO,u0 ]

with

Ty = JH dN'Qu ey (10)

The transition probability per unit time, QN'N’ will be derived on physi-
cal grounds later (c.f Part 6).

From Eq. (6) and (7), we obtain the master equation
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BPI:I.V”E’Y.’t] 6PEV”!:’Y.’¢]

+ du'v(u') . ————-——-—-f dN";Q plyr,n,v,t] -
!u - snlu’) Wl b zu.e]

3t
- QNrNPIZV’Q’Y.’t]:I (1)

Two kinds of solutions of Eq.{(11) will be considered:

1) the steady-state (time-independent) solution Ps[lV,{g,\_l];

2) the conditional solution P[—_I_V,{L.,\i,tllvo,@,\.{,t].

A steady-state solution may exist when QIVN' is time-independent. A con-
ditional solution may be obtained by solving Eq.(11) subjected to the i~
nitial condition 8[N-N,] at ¢=t,

V¢ term RHS and LHS the right and left hand sides of Eq.(11) as

well as of its transformations that will appear in the sequel.

4. MOMENTS AND PROBABILITY GENERATING FUNCTIONALS

The average of a generally non-linear functional ¥ is defined

in the usual way

=

<FEV,§,\1,£> = JIH dan P(W,n,v,£]F

SLY,E (12)

a similar definition holding for the steady-state average

<FIZV,1L.y]>S :

A special notation is reserved for the steady-state average of

the state variable at the phase space point L—L~=%1

Flra,vr) = Blulur) ,vluy)) = év(g1)>s . (13)

Averages of several kinds of F-functional will now be defined.
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4.1 — Non-central averages
Three types of non-central averages will be considered:

a) the local mornent
MO (ny,v1,) =<N(L51)k> : (14)

b) the non-local moment

Mot o) = Bl i)y 5 (05)

c) the exponential pgf

elx(w () ,v(w,t] = éxp[[u du ¥{w) x(t_{)]> . (16)

It is worth mentioning that the corresponding F-functionals associated to
Eq.(14) through (16) do not depend explicitly on 4, v and t.

42 — Central Averages

Similar definitions can be given for functionais acting on the

central variable

n(w) =W - #lr,v) . : (7
The definitlons are:

a) the central local moment

mee (h0,08) = < e - z‘v(z,,g,>]’<>; (18)

b) the central non-local moment

M see stV e aVpat) = <EV(L~L‘)—I'V(/51,\11)J - E”‘ik) -I'V(gk,gk)]>
(19)
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c) the central exponential pgf

o[ 2w v 8] - <epr [ N(g)-ITI(fL('u),v(u)ﬂ>
u (AT R ALY
(20)
Now due to the presence of the steady-state moment ¥ in all expressions,

the corresponding F are also functional of x(u) and v(u).

Functional derivatives of the exponential paf's lead tothe non

-local moments

ska[x(cg J(u) ,vlu),¢] )
Mk(/gl,...,fsk.gx,...,\Lk,t) ‘(1) =0

ex(uy) ... 8% (u,)

(21)

8 kgl:X(%) o alu),v(w) ,t]]
8x(u,) ...6x(uy) x(u) =0

<
=
o+
~—
I

mk(,f,l’ . -°’)Lk9!!a LI
(22)

5. FUNCTIONAL KINETIC EQUATIONS

Let us find a kinetic equations for the average of af uncti onal
F. Multiplying Eq.{(11) by F and integrating the variable ¥, we obtain

5<F> aF Yo opt §< > sF
-/ or qulv(u'y | - (2
ot <”>+fu LU [ww 8(u") } ?

LHS =

and
RHS = L{ an' QN'I‘.’[ 71 - F[IV]] . (24)
Wsing a new notation for the transition probability
¥aw,w = mon,y (25)
wher e
AN(W) = W'(u) = F(w (26)
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is the net transition of the neutron density, we obtain
RHS = JH an Wy, y [FOd] - F[zv]] . (27)

Kinetic equation for the averages of the functionals definedin

Part 4 will now be derived.

5.1 — Kinetic Equations for Non-Central Averages

Cmbining Eq. (14) through (16) with Eq. (23) and (27), we ob-

tain the

a) kinetic equation for the local mment

joc
oMy loc K k=7
sy M -3 (B <D.[N(u),u1]N(u1) J> . (28)
-~ k 7=1 J J pridi s ~

t

where
J
vj[zv(g),g,] = JH dnm(u) Wnw(w) 0 (@) [sz(g,)] ; (29)

b) kinetic equation for the non-local moment

8Mk k
—_—+ I v, * Y"Mk =
% k
= 3 T DEV(u),u s ,%;] I LWy Yy, (30)
J=1 ’L1<..<7,. 1 z#’bl,.. ’7’j
=1 =1
where

0.0y, o] = [H D Wy pig L) -80) 5 G

c) kinetic equation for the exponential pgf
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§—§+[u du'v(u) . % =<R[1v((g,x<g)]F[zv(g),x<g)]>, (32)

Sau')
where
Fitw , x(w] = exp[ [u du m@xug} , (33)
RI(w ,x(] = FIw,x(w] -FHw,0] (34)

and G’w is the exponential pgf of the trancgition probability, namely

¢’ (W, (w] = [H aw #yy p FAmd (35)
with, according to Eq.{(10) and {(25),
¢ W, = Ty - (36)

5.2 — Kinetic Equations for Central Averages

Combining Eq. (18) through (20) with Eq. (23) and {27), we ob-

tain the

a) kinetic equation for the central local moment

z}nloc
k . foc loc . s
o + Y YI mo x . R A A
koo o
= % domw,e] nw)“? ) (37)
PRI AN 1 !

b) kinetic equation for the central non-local moment

am k k .
R I S S ) VN 7
3¢ gy 9 Tk =1 k-1~ T
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k k
=1 1 %Ev@),ei,...,aij] TT  oaw) N, (38)

where

(# _ .
mk_] = mk'](i(],.'.’ﬁ’j"l”»zj'l']"..,)l‘k,\—{i’..., “;7.‘]"‘3;7'+],...,Ek,t) 3 (39)

c) kinetic equation for the central exponential pgf

2€+J du'v{u" . & +g[ du'x(u')v(u') - w(r',v")
e Ju T T sn(u’) u ~

- é[zmg (W IF [ ,X(g)]> , | (40)

where F and R are given by Eq.(33) and (34).

We mention that the general central moments kinetic equations
cannot be trivially obtained from the corresponding non-central equa-
tions and the transformation given by Eq. (17).

In order to simplify the kinetic equations further, we anteci-

pate the result (c.f. Part 6)
Rm(w,x(w] = B, x(W] + arMn(w),x(w] , (41)

claiming tliat AR is a linear functional of its argument n{4).

From the general relations between moments and pgf derivatives,
given by Eq.{21), and Eq.(41) and (31), we also obtain

Dj@(‘f)ﬂ‘ily"-:q‘g’] = Dj[ﬂ,%’---,‘:‘.j] + Avj[n(q) 7%1,--09%‘7'J b (l;Z)

with AD3. linear with respect to n{u).
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W shall apply the above properties to obtain simplified vers-
ions for the kinetic equations associated to the central averages given

by Eg. (38) and (40). Similar equations can be obtained for non -central
averages which, however, are not our main concern in this paper. Weshall
not be concerned also with Eg. (37) since in its RHS appear non-local mo-

ments.

Performing the averaging operation indicated in Eq.(38), taking

into account Eq. (42), we obtain

omy & ) "
—= .V, v,
% jz1 A jzrmk" DARCEE
k k - (i]l"',i 9)
= ( C [ Nothy 5oyt | 3 (43)
J=1 W <. .<gy 1 “Ja k-7
=1 \
X k (£y5.0057)
+ AD . LI I Us LU,
g=1 i,<...<2 J J* 4 i

where, in a notation consistent with Eq. (39), we term

(Zyyeneyis) _
My = ’"k-j(’h""”ft"'°”£k"i1’°""i/&"'° V. st)

(8),00e2y) ’

My el = M R SR I AL S E R R FIPRRR I )

RN (k)
It will be instructive to specialize Eq.(43) for the cases k=l

and k=2. The former case leads to the first order central moment equat-

on

om
—2 4+ vpeVam + Vel = Dy [Fuy] + A1 [my,uy] . (L5)

ot
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I¥ the reactor is stationary (i.e. if the transition probabi-~
lities QIVIV” and therefore, the Dj do not depend on time), the first
order steady-state central moment is zero and the following steady-state

equation is obtained
vy, =D1[N"i'1] . (46)
For this case, Eq. (45) reduces to the form

om
—L 4y, ¥m =80 [m,u] (47)
ot

or, in terms of the Boltzmann operator B,

am
-B—t—— + B ml =0 (h8)
with
B=vyev- a0 [0 . (49)

The second order moment equation is obtained from Eq.{43) with

k=2. For a stationary reactor, we have the result

om

2 . . - m (2)
24y Um 4y Tm = AD [m2 ,tg:l] + 80 [m2 ]+

ot
+ Dz[ﬁ’%v‘fz] + 40, [ml,gl,tiz] (50)

where, according to Eq. (44),

(m

m, = mz()l',,(’ 2)

(2)

m2 = (’Ll’ ’~l’ ) . (5])

In terms of the Boltzmann operator, Eq.(49), and keeping in mind Eq.(51),
we cast Eq. (50) into the form
omy

— +Bm, + Bym_ = D[Nu. o) + 80, [m u 0 (52)
at
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Next, using Eq. (41) in Eq. (40), we obtain the RHS of the ki-

netic equation for the central exponential pgf

s = R[N, x(w]g + AR [65-? , x(q)] . (53)

x(4)

Let AR be the Kernel of the linear functional A% . Then, we can write

Eq. (40) in the form

ag ' Sg ) .
5t fu du'v(u’) . +9g fu du'x(u') y(y') V2’ u")

nlu')
- Alxwle + | gt a7 ) e (54)

5.3 — Kinetic Equation for the Second Order Covariance

Covariances of up to an arbitrary order can be derived taking
into account the Markovian property of the stochastic process*. The sta-
tionary second order non-local covariance, in particular, is defined by

the doublet steady-state average

m2l(%2,t2;t£1,tl) = <n(l£2’t2)n(l£19tl)>s (55)
Applying the conditional relation, given by Eq.(5), we obtain

m_

a8yt 38t ) = él(tﬁz,tzlt!)n(gl,tl>s (56)

where m, is the solution of the first order moment equation

aml

— Bzm1 =0

o (57)
m (u,t [t) =nlu,t) .

* In fact, the derivation of only third and higher order covariances re-

quires the Markovian property to be invoked.
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Therefore, M, is the solution of the equation

21
ot *Bm,, =0
(58)
s
m21(l£2,'b1,b£1,‘b1) = mz(lil.%z) )
where
38
w,u) = u_,t In(u, ¢ . 59)
mo (e, ) <1<~2 Jnleye)> (

6. TRANSITION PROBABILITY FOR THE NEUTRON TRANSPORT
PROCESS

We shall make the usual assumption that the only possible tran-
sition events are source emission, capture and production (scatteringand
fission) . Moreover, in a vanishingly small time interval, the probabili-
ty of occurence of more than one type of event at more than one phase
space point is also vanishingly small. Therefore, all events at all pha-
se space points are independent of each other and the total transition
probability is made up of summed contributions of every individual event

and integrated contributions of every phase space point.

The net variation of the number of incoming (q’) and outcoming

(Li") neutrons for each event is given in the table below

event A incoming A outcoming
neutron (u') neutron (u")
source emission 0 1
capture -1 )
production -1 v

Table 1 - possible transition events for the prompt neutron model
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The relative probabilities of the events will be measured by

the fol lowing material parameters:

external source: S{x",v")
capture cross section: Ze(/g',g')

production cross section: Ip(h’ RYLEES LRTLELY) I

Due to the local nature of the production event, we have

B (80t > A = ST (et > ) L (60)

With the above assumptions, the transition probability is given

by

Paw(u) ,m(w = L‘ du" $(n",v") §[am(w) -8(u-u")]

| v e s + olwyt]
u

+ ) I du' J du" v'(u") T (1'5u'u"v) 8(n' -t s[am(w) +
viu T o du T - P

+ S(uru') - vd(u-uM] . (61)

W\ proceed by computing the exponential pgf of WAN N From Eq.
2
(35) we obtain

Gw[l'l(t_{),x(g)] - Ju dlﬁ" QX(%")S({Z_,",!") + Ju d%' e—X(%')V’N(E')EG_({E’t!')

+ ZJ d‘f'J du” evx(‘f")-x(%')uvlv(lir)S(Er_erp)zp()ﬁv;\it_ﬂin;v) . (62)
v /U ua -

From this exponential pgf we can compute moments of up to any order. Ex-
plicit expressions for the first two moments (the mobility and diffusion

functionals) are given below

56w, x(w)] J
D ol = f——— =T
[ %J e () =0



= S(n1,v1) - vil(a1,v1) E(1,,vy)  +

+ J dv' v'B(11,9") VE (#1;0"v1) (63)
vo- S S
" 66’ [W(w) , x(w)]
0w, u1,uz] = | —mM—
- - _ 8x(u1) 8x(uz) x(uw)=0
= 8(n1-12) l-G(\_)_l'\_f_z) S(n1,v1) + val{ry,vy) Z,(1,v1)
L -
+[V dy' v (r1,v") ;iz—p(lgx;g'—*gl)]
- :’2”(’51,\12)@(’31;\_{2"\11) + V1”(’§1,\11)3§(’515‘11"3{2ﬂ
(64)
where - .
z ' = < sty \
VL, (a5uTay) = \E) V'E (50T v) (65)
(1Y) = L0 + I (1,0) (66)
(1) = JV d' T,y (67)

W% are now in a position to calculate explicit expressions for
the RHS terms of Eq.(47), (52) and (54) . The RHS of Eq. (47) was included
in Eq. (48) in terms of the Boltzmann operator, Eq. (49), which can be

written in the familiar form
Bm = weUm + vmz, - I dv' v'm(n,v') T)fp(n;v'-w) . (68)
Vo~ i D4 LYY
The RHS of Eq. (52) springs out directly from Eq. (64) through straight-

forward substitutions. The RHS of Eq. (54) is obtained from thefollowing

two terms

R, x(w)] = Iu du |:ex(°.9-l] S(n,v) + Ju du [e'x('é)_ﬂvlv(%)ze(fﬁ,!)
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+ XJ duJ d%'[:eVX(%)TX(%')_]]VvN(%r)5(,2_,}‘1)22)(,5!1_,!;\)) (69)
viu “u

AR[X(L‘&) ’%v] - Ee'X(L_L") ']]V’Zc({':' ’Y.')

+ z { du [eVX(E)'X(%')_D U'6(/L—/L')Z (’_L}!"’Y,;\’) (70)
viiu -~ P

APPENDIX A — Stochastic Transport with Delayed Neutrons

The functional approach presented sofar can be easily extended
in order to include delayed neutron precursors in the model. W do not
intend to duplicate here all results that have been obtained in the fra-
mework of the prompt neutron model but rather indicate the main points

which have to be modified.

The state variable containing the neutron density, Yo(u)=N(w),
and the precursor densities, Yi(g), J=1,...,d, in phase space is denoted

by

7w =col. [To(w) 1w ... T w] . (A1)

With the assumption that the precursors are fixed in the posi-

tion space, we have
yjag = CJ.({L) 8(v) J=1,...,d (A.2)

The probability density functional is defined in terms of the

state variable, the position and velocity functions, and time,

Plr(w,z (@), ... ory(w 00w, ..o y(w) 2],
at the point
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no(w) = 2(w) = 2 volw) = v(w) =y
{El(L_L_) = &(q-) \_{1(@ = 0

. . (A.2)
r(w) = W) vglw = 0

The transition events are given in the table below.

A incoming A outcoming
event:
neutron(u,) precursor(u_!?3 neutron{y,) precursor(q_.é!)
source emission 0 0 1 0
capture -1 0 0 0
precursor emlssion 0 -1 1 0
production -1 0 v v,
0 J
Table A.l = possible transition events for the delayed neutron model.

The relevant material parameters are:

axternal source S(ny,v)
capture cross section Zc(/_;a,yg)
production cross section Zp(’féi!é"i‘ﬁ’---".‘2»‘33»--”22;“)

probability density of
neutrons produced from
a precursor decay pj(l%'. > a, vy) .

Due to the local nature of the production events and tothe fact
that precursors are fixed in space, we have

Zo MoV > Ay eVt e V5 Y)

d
= Sl I ol () (v > i) (A.4)
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pyar > ag,ug) = Slag-ry) x(a7,v0) (A.5)

where the del ayed neutron spectrum is normalized

~0 7~

JV dvl Xj(/l" yh) =1 (A.6)

The transition probability is given by

d
= t gt
Varyy = |, 40 508D SD% @ - sl T sy w)]

d
+ J dugvs Yo(%)zc(n;,u;)6|AY0(u)+6(u—u5)] jI_I] SIAYj(u)]
U Lo»Y, L) +oiu-y, £ 4

d
I [u au [U a2 (wh) SC-21 et o) S AT () -6(u-uf)]

Sy (w)+6{u-ul)]
d ' 1 1] ? 1] ] " [
DI AT [ ] awr vy o) stuin st e

L, (rvious) O[T, (w)+8(u-ty )-vy8(u-u) J8[AY (W) -v,8(u-u )]
(A.7)

The exponential pgf of the transition probability is defined by

PR, 1w] = [ W gy ool wwrw] e
and given by

X (uf) -x4(ug)
Plod = | ag st o' ¢ [ ad vl e

d dll' du." Y ' n ! " " x°(%’o’ -xj(%!;.)
+ j_; JU 4 ju ug MY (ui) stng-22)x (15, v0) e
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d |
' ” "o ' [ ) () "
I [ | | a i nep sl e sy
Voxo (ul) ~x (u!)+v .x{u")
Lisvivsye 0 T (A.9)

From Eq.(A.9), all previously obtained results can be reformu-
lated. The first two monents of W in particular, can be calculated
through the functional derivatives

el :
D, [¥(w,u, ] = (A.10)
0, ((u ‘fu] {6&(9& ) ]’ﬁ(@=9
22[}..'(‘.5)'%1’421 = 5" (A7)

sx(uy) 8¢ (uy) Jx(w)=0

where Dy is a column matrix operator and @ a symmetric square matrix o-
perator

0, [2(0) yur,ua] = D502 0] = D3[E(W up,a].  (A12)

Explicit calculations for the first moment of W lead tothere-

sult
0, [T ,u), = S(,v) - v¥(x,v) T,01,v)
d
1 ]
+ J av' v Yy(x,v') vof (r3v'v) (A.13a)
v o pem s
0y [¥(w,u]; = 6(v) Jv ' v T (") VT ') - A Taa,v) o (ALI3D)

From Eq. (A.13), (A. 2) and an equivalent version of Eq.(47) ,
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we obtain, in obvious notations, the central first moment kinetic equa-

tion
3NM> |, yuVen> + v<n> T, = %Z AX<e> + | dv' vin'> v, 2! (A.1ka)
5t =2 - P P oZp :
3<e >
I = J av' vi<n'> vIT - A, <c.> (A.14b)
9% v Jp J Jd
Higher order moment equations can be obtained in a similar fa-
shion.

APPENDIX B — The Non-Hornogeneous Poisson Distribution

Let )‘(’b‘.’.) be the probability of detection perunit phase space

per neutron absorbed. In terms of the stochastic variable

t+T
ey = [ e[ o @ awy rauen @i
t R v

the probability of obtaining X counts in the interval (¢,t+1) 1is given
by
= (1)
K t\‘-l

N i AL (a.16)

where the average is taken over the neutronic process. In case the reac-

tor is stationary, PT(K) is independent of t.

Eq.(A.16) can be generalized in order to include counts in mo-
re than one time interval. For a review on the application of the non-ho-

mogeneous Poisson distribution, the reader i's refered to Watsonl®’11,
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7. CONCLUSIONS

A functional approach has been applied to formulate the sto-
chastic transportofneutrons in a simple and compact form. A single func-
tional master equation has been used in the derivation of kinetic equa-
tions for several quantities of interest such as centraland non-central
moments, exponential pgf's, etc. The particular form of the transition
probability does not play any role in the theory until all relevant ki-
netic equations are obtained in compact form. Inorder to mantain consis-
tency with the continuous phase space formulation, a singular transition
probability is introduced and explicit formsof kineticequations can then

be obtained.

The first order and the stationary second order non-local mo-
ment kinetic equations agree with results previously obtained through
other methods, e.g., the Langevin approach used by Akcasu and Osborn®.
However, as has been pointed out by Watson!! in the framework of the point
reactor model, the Langevin rnethod does not predict a correct kinetic
equation for the non-stationary second order moment. an additional term
appears in the equation (c.f. second RB5 term in Eq.(52)), which is due
to the stochastic nature of the diffusion functional P,. Itis worth men=
tioning that a (correct) non-stationary second order moment is required

in order to obtain a statfonary third order covariance kinetic equation.

Much like in the case of conventional (deterministic) transport
theory, we have not attempted to *‘solve’ the kinetic equations obtained.
Our formulation should serve rather as a starting point in the derivation
of more tractable approximate equations in a consistent way, likethe P,
and multigroup-diffusion equations,a task which is beyond the scope of

this paper.
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