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It is shown that classical systems with non-integrable cons-
traints cannot be derivable from a variational principle without invo-
king subsidiary conditions. Quantization by Dirac's method orby Faddeev

-Fradkinls modified path integral method is therefore impossible.

Mostra-se que sistemas classicoscom vinculos ndo integraveis
nao podem ser derivados de um principio variacional sem orecurso decon-
dicbes subsidiarias. A quantizacdo pelo método de Dirac ou pela verséo
modificada por Faddeev e Fradkin da integral sobre trajetdrias torna-se

portanto impossivel.

1. INTRODUCTION

If one analyses the developrnent of natural science in thiscen~
tury one immediately perceives two branches which blossomed into theo-
ries of natural phenomena with disjoints domains of applications. Onthe
one hand stands quantum theory searching for the fundamental forces of
nature and, on the other hand, stands the theory of dynamical systems

trying to describe the macroscopic world that surrounds us.

One may place the starting point of the development of quan-
tum theory on the quantization of classical hamiltonians associated to
atomic systems. The success of quantum theory followed quickly in the
domain of atoms, molecules, crystals and atomic nuclei. But, to develop

itself into a consistent theory of nature quantum theory had also to
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quantize the fundamental fields of forces and contain asymptotically e-

very classycal system.

For systems with a finite number of degrees of freedom two re~
sults were of fundamental importance: pirac's’ treatment of singular
lagrangeans proved that every consistent lagrangean gives, by the use of
the variational principle, equations of motion that can be put into the
hamiltonian formalism, the singular lagrangeans giving constrained ha-
miltonian systems. The extension of Feynman integrals to singular la-

2 and extended by Fradkin* made

grangeans, as proposed by Faddeev
the programme for quanirization of equations of motion derived by the va-
riational principle formally well defined. If one might summarize the
general approach to a quantized description of the fundamental forcesof
nature one would say that it is centered around the ideas of modelling
with field lagrangeans and the extension of Faddeev-Fradkin's functi-

onal integral to infinite degrees of freedom.

The purpose of this paper is to call attention to the possi-
bility of theoretical development in a diametrically opposed direction
to the one considered so far.

If one would have tried to explain the whole spectrum of sys-
tems, from simple atoms to large macroscopic objects ininteraction, one
would apply quantum theory to the atoms and classical dynamics to the
macroscopic objects.

These opposing descriptions would not be in conflict if every
classical macroscopic systems could be derived as the asymptotic limit
of some quantum system. This is certainly not so. W shall show in this
paper that the conflict exists even in the realm of newtonianniechanics,
as in the case of particles moving subject to non-integrable constra -
ints.

In the next section we shall discuss the simplest caseof new-
tonian mechanics with a non-integrable constraint: a particle in three
dimensions subject to a single constraint. In section 3 we generalize
our results. In section & we discuss an example. In section 5 we argue

on the impossibility of quantizing such system by any standard method.
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2. THE THREE DIMENSIONAL CASE

Consider a non-relativistic particle with mass m and coordina-

tes 5 subject to the ideal constraint given by
a,dq, =0 (2.1)

summation over repeated indices being meant.

Eg. (2.1) means that at every instant of time themotionof the
particle is such that the possible virtual displacements dqimust be per-

) >
pendicular to the vector a with components a,. We shall assume, fromhere

> .
on, that a is a unit vector:

a.q. = 1 (2.2)
17

From D'Alembert's principle we must have
mi dq, = O (2.3)

subject to eq.(2.1) from where we easily obtain

ma; = ey |
_ (2.4
aiqi = 0

X being a Lagrange multiplier.

Eliminating A from the above equations we obtain finally
q; + ai‘(aaj/aqk)qjqko =0

a.g. =0 (2.5)

A
as the equations of motion, with X given by
= -m(3a,/3q 4.4 ..

Jd g

Let us try to obtain the same equations from the variational

principle.
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W begin choosing the lagrangean
L=1/2maqq, -\ aq, (2.6)

where we treat A as the fourth coordinate of the particle
The Euler-Lagrange equations give

mg =03 -\ Arotd

=90 (2.7)

Qe

->
ae

W& may decompese rot ain its two components one parallel to a
. . 3
and the other in the plane perpenticular to a. W get

i mZ; = ()'\--A;-g A rot @a - A rot —07)3 N4 (2.8)

Therefore eq. (2.7) is equivalent to eq. (2.4) if and only if
derot a =0 (2.9)

which is the integrability condition for the constraints given by eq.
(2.1).

We therefore conclude that the necessary and sufficient condi-
tion for the lagrangean given by eq. (2.6) to give the correct eq.(2.4)
for the motion of the particle is that the constraint, given byeq.(2.1)
be integrable.

This result suggests the question if some lagrangean, not ne-
cessarily of the form given by eq. (2.6), may give the correct equation
of motion for non-integrable constraints. Before considering this fun-
damental question we shall generalize the results shown in this section.

3. THE GENERAL CASE

W% now consider a generalization of the previous resultby con-
sidering a free particle moving in a n-dimensional space subject to p

ideal constraints (p ¢ n-2) of the form
B dg. =0 B=1,2,...,p (3.1)
7 T
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W assume, without loss of generality, that the vectors aB
length and linearly independent.

are of unit

Newton's equations are therefore, from D'Alembert's principle,
of the form

mq,b = }‘Bai (3.2)

where XB are the Lagrange multipliers. From egs. (3.1) and (3.2) we
obtain

. Bra B ..
q; + ai(aajlaqk)qkqj =0 (3.3)
Let us consider
L=1/2 mc}.z}.-)\aBé | (3.4)
97 A ’

and let us investigate whether the above lagrangean produces, bythe va-
riational principle, Newton's eq. (3.3).

The Euler's equations derived from L are

=3 B . B .
mi, = Xa, + )‘B(ai/ % Baj/ Sqi)qj
aqg, =0 , Z=12,..n. (3.5)

It is easy to prove that the condition for eq.(2.5) to beequi-

valent to eq. (3.3) is that the vector A with components given by

- B _ 8 .
i_xs(aai/aqj Baj/aqi)qj (3.6)

be a linear combination of the vectors aB, that is

Bin  _a By vt _ B
XB(Bai/BqJ. aaj/aqi)qj Ceas

6 (3.7)

We now prove that the condition given by eq. (3.7) is equiva-

lent to say that the system of forms given by eq. (3.1) is integrable.

463



Let us suppose that the system is integrable. Then, there must
gg!

exist a non-singular matrix # and functions ¢8(q) such that

B8 _ .BB' . B!
a; dbi =t d¢
Calculating Ai using the above equations we obtain

- . BBI Bl .
4, xB(at /aqj)(a¢ /qu)qj

Therefore

where

BR' -1, B' B
c, = - It .
g xs(at /an)( ) a;
which proves that if the constraints given by eq. (3.1) are integrable
eq. (3.,7) is valid.

Let us now start from eq. (3.7) assumed valid for every possi-
ble value of the AS compatible with eq. (3.5). From eq. (3.5) we conclu-
de that XB satisfies a first ?rder linear equation and therefore, for
every set of values of g and ¢ we can arbitrarily choose the values of

XB. This being so, we conclude from eq. (3.7} that
B _ a.B . B!
(Bai/qu Baj/qu)qj = (BCB,/BXS)ai

Let us interpret the above equation as a ‘relation between

forms. We have
B _ o B _ B!
(Bai/aqj Baj/aqi)dqj = (acs‘/aAB)ai dt
or better

B - aB _ B!
(Bai/aqj) aaj/aqi)dbj A dqy = (acB./axB)dt/\ a; dq;

8

writing w” = a, dqi we have
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and = 172 (aaf./aqj - 3a5/3q,b-)dqj A dg.

7

and thus, from eq. (3.8)

de = S'S,uuBI
where
B _
81 = 2(308./3x8)dt

Let us call

Q=wlh w2a con n o

W have finally

3

and by Froebenius Theorem®, the system

is integrable.

4. AN EXAMPLE

In order to make clear the difference of the results of the
newtonian and lagrangean approaches to the equation of motion, we con-
sider in this section the simplest case of non-integrability of cons-

traints. We suppose the constraint to be given by
dldq9 + dq3 =0 (4.1)

This corresponds to have a; given by

2 o 17(1+¢%) 1/2 (4.2)

a =0, a2=q1/(l+q‘ ,

1
The condition of integrability is
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derot a = 1/(14q%) # 0

everywhere different from zero, exhibiting the non-integrability of the

constraint given by eq. (4.1).

Eq. (2.5) take the form (m=1)

G =0
G2 = ~1q192/ (1 + q3) (4.3)
‘.Ia = 'qxc.zz

The general solution for the above equations can easily be

found
= + .
ql qlo qlo ¢
/1+q7 ] q, *+ l+ql
q =q * - In (4.4)
2 20 20 .
910 qy6 + y/]+q§°
Cho”""l%o
q =q = ——— (/1+g% - /i+q2m)
3 30 q,,
where

> 5 . e .
qo = (qlo,qzo,q3o) and qo = (qlo’q2°’q3o)
are the initial position and velocity of the particle, respectively. It
is interesting to notice the absence of c;;n from eqgs. {4.4), This is so
because the initial conditions have to be consistent with theconstraint

equation and we have the relation

7 + =0
900 T30 T 4,

from where we eliminate c; . from the law of motion.
3

-
If one considers all the trajectories that start from qo' one
obtains a surface which in our case has its equation given by the eli-

mination of gi1o and gz2o from eq. (4.4). W obtain
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— p—— q + V1+q>
(qz-qzo)( Hq: ) quo) * (qa-qso)]n ———-0 (.5)

/ 2
qu * ‘+q10

Though the motion which started from the point 30 is restricted to the
above surface, this surface is not an integral for the constraint as 3
is perpendicular only to the trajectories that pass through the pointgo
but not to the whole surface. Suppose we proceed along a particular tra-
jectory and take another p_gint 2?0 constructing the surface of the tra-
jectories that start from gy. the new surface will be different fromthe
previotis one intercepting it along the common trajectory that connects
3 ~
q, to q,-

Let us suppose now that aidqi is integrable and ¢(c_1)) isanin-
tegral of the constraint. In this case the trajectories that start from

g’o lie on the surface given by
o(@ = ¢(q,) (4.6)

3
and the trajectories that start from E{"o lie on a similar surface given

by

4@ = 0@) (4.7)
|fa is on the surface given by equation (4.6) then
0(d,) = ¢(g,)

and the two surfaces, given by eqgs. (4.6) and (4.7) are the same. The
integrability of the constraint decomposes the configuration space into
disjoint classes of points, each class corresponding to a surface ofthe
form given by eq. (4.6). The dynamics of the system is fundamentally in
a four dimensional phase space in contrast to the case of non -integra-
ble constraint where the phase space has necessarily five dimensions.

Let us consider the equations derived from the lagrangean gi-
ven by eq. (2.6) with the constraint given, again, by eq. (4.1). After
some algebraic manipulations we have the following set of equations for

the description of the motion
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RS 2y 3/2
q, = -xq,/(1+q})
. qlélc}z )\ q.l
g, =~ +
2 1+qf (]+qf)3/2
5 q (4.8)
A o= - _‘_2__1_/.5
(1 + 43
C}; = =i q.z

What is important to observe is that X satisfies a first order differen-
tial equation and that the equation for a depends on A. Thus, by giving

L . > . . .
the initial conditions at g, (q“,qoz,q“,q and qoz) the motion of

the particle is still undetermined, in contorlast to what happens in new-
tonian mechanics. The natural way to fix the conditions for eq. (4 .8)
is by specifying the initial and the final points of the trajectory. In
this case, the initial values c}ﬁ, éoz and AO, for the velocity and A
respectively, can be chosen for the motion to reach the final specified
point. It is interesting to observe that in the newtonian case, theini-
tial position restricts the final position of the trajectory to thesur-
face given by eqg. (4.5) . In the lagrangean case this is not so and even
if the final position of the particle is on the surface above, the mo-
tion is very much different from the newtonian dynamics as one can ea-

sily be checked by inspecting the law of motion for a

5. CONCLUSIONS

To quantize a classical system by the general procedures de-
veloped by Dirac supplemented by Faddeev and Fradkin one has to start
from a lagrangean that contains all the dynamical information ofthe sys-
tem, the equations of motion being Euler's equations derived from the
vanishing of the first variation of the action. To quantize classical
systems with constraints one has to obtain a lagrangean which gives, by
the variational principle, not only the standard equations of motionbut

also the constraint equations.
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If we consider a non-relativistic free particle subject tothe

constraint

adqg. =0 (5.1)

7 1

then the lagrangean
L=1/2m q;9; - A aq;

gives the correct equations of motion if we treat A as the fourth coor-
dinate of the particle and if w = a7:dqi is completely integrable. This
result can easily be generalized when the particle moves in a n-dimen-
sional space with the constraints of the form given by eq. (5.1) as we
have done in section 3. Both results can be further generalized whenthe
system contain applied forces. If the constrained motion of the particle

is described by the lagrangean Lo(q,c}) then, the lagrangean

_ A Re
L = L0 (q,q) Aﬁaiqi

gives the correct equations of motion and constraint if we treat AB(B=

=1,2,...,p) as additional coordinates and if the system of forms
B = =1,2
w Zadg., B=1,2,...,p ,

is completely integrable. In case the systems of forms is notcompletely
integrable the Euler's equations derived from the lagrangean given by
eq. (5.2) are not the correct equations obtained by D'Alembert'sprinci-

ple which is fulfilled by every classical system with ideal constraints.

The question one can ask immediately is whether there isa
more general lagrangean than these considered so far that reproduces
the correct equations of motion. Let us try to answer this question in
the case of a particle (free) moving in three dimensional euclideanspa-
ce subject to a single non-integrable constraint. W suppose that there
is a lagrangean defined in a four dimensional manifold that exhibitsthe
correct equations of motion as given by eq. (2.4) . If one of these equa-
tions is first degree in derivatives, the lagrangean is necessarilysin-
gular and its hamiltonian system has constraints. The total number of

constraints and gauge conditions (associated to each first class cons-
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traint) is necessarily even (see, for example, Fradkin“ and therefo-
re, by the general theorem of constrained hamiltonians, upon elimination
of the constraints, we end up with an unconstrained hamiltonian H with
phase space of dimension 2(n-p.), where 2p is the total number of cons-
traints and gauge conditions. In our case, as the phase space of H has
to contain the phase space of the system given by eq. (2.4) we conclude
that p=l and H* describe the motion of a system in six dimensional pha-
se space. Now, the phase space of the system given by eq. (2.4) hasonly
five dimensions and, therefore, it must be constrained in a five dimen-
sional manifold of the space of H* Let us assume this manifold to be

given by the equation
x(p*,q*) =0

Because the system under consideration does not move out of this mani-

fold we also have
X(p*,q*) = {x,H} =0

and it follows that ¥ is a constraint for the system described by H*
which, by construction, is uncostrained. As the contradictions camefrom
the assumption of the existence of a lagrangean for the system given by
eq. (2.4) we conclude that it is impossible to construct a lagrangean
that completely describes the motion of a system subject to non-inte-

grable constraints.

W therefore conclude that there isa fundamental conflict bet-
ween the quantum description of the microscopic level and the classical
description at the macroscopic level. This conflict is not only between
quantum and classical mechanics but also with thetraditional methods of
doing statistical mechanics which is based on the existence of a hamil-

tonian for the elementary systems subject to statistical analysis.

However, there is a difference between the conflict in statis-
tical mechanics and quantum theory. Statistical mechanics makes use of
hamiltonian dynamics only to assure the invariance of the density of
phase space. This does not require, by itself, that the classical sys-
tem be necessarily hamiltonian. On the other hand, if one takes the quan-
tization rule as given by Feynman path integral in its hamiltonian form,
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one observes that it requires two invariants: the phase space density

and the Poincaré-Cartan invariant

I (pdg - H dt) = invariant

It is an important result of mechanics® that the invariance of
the integral above is equivalent to impose that the system is hamilto-
nian what shows once again that one is able to quantize only classical

hamiltonian systems.
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