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This paper reports the nuclear densities, radii, multipole
moments, form-factors and transition probabi lities obtained for the A=4n
type of nuclei in the s-d shell, using the Hartree-Fock wave functions
calculated in Ref.(I) with the Skyrme force. Experimental dataand theo-

reticalJ vaiues derived by others are shown for comparison.

Este trabalho apresenta as densidades, o0s raios, 0S momentos
de multipolo, os fatores de forma e as probabilidades de transi¢cdo nu-
cleares obtidos para nucleos da camada s-d, do tipo A = 4n. usando as
funcBes de onda de Hartree-Fock calculadas na ~ e.(f) com a forca de
Skyrme. Os resultados sao comparados com medidas experimentais e com

valores teeéricos derivados por outros autores.

1. INTRODUCTION

In our previous ~ a ~ ewe' applied the Hartree-Fock (HF) ap-
proximation with the Skyrme force to the A=bn type of nuclei in the s-d
shell. we used the Peierls and Yoccoz projection method to obtain wave
functions of good angular momentum, energy levels and transition proba-
bilities crithin the ground state band.The results were betterthan those
obtained with more sophisticated two-body interactions. W had to assu-

me the 0'® to be an inert core and the basis of independentparticle wave
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functions was truncated to the s-d subspace. Time reversal and charge

symmetry were also assurned.

The two-body part of the Skyrme? interaction is written in

configuration space as
> > &> > ]
7’12(1”1‘1"2) = to(14xoP°) 8(ry-7,) + 7 £ (14x,P%) .

[ 6@ym) + 6@ 2% 1+
(1)
+ s z+ . 6(;1-;2)Z +

+ 7 W0(31+3é)i'x 6(;1';é)z N

> . g . :

where k' and % are relative momentum operators; P is the spin-exchange
3 3

operator, 0y and o, are Pauli spin matrices. The three body term of the

Skyrrne force is also of zero-range
= > > > > B
V123(P1-Pp, Po-r3) = £3 8(r1-ry) 8(r,-ri) (2)

and, for HF calculations of even-even nuclei, this force is equivaler?
L]

to a two-body density dependent interaction

> > >
P1+T2 r1+r2

w1,y -Fo) o) = 7 3 (147 8(F1-35) p (—g) (3)

In Ref.(1) we discuss how we performed the fitting tonuclear

properties, that lead us to the following values for the parameters:

-1115.5 MeVfm3 t 314.6 MeVfmS

0 1
- 106.7 MeVfm® ty

o+
]

14992 .8 MeVfmé

<+
i

x = x. = 0.8 174 68.1 MeVfmS

0 1 0

What we found was cornpared to the available experimental da-

ta and to some theoretical results derived by others.

D. Vautherin3 used two sets of parameters determined by Brink

and himself (VB-i and VB-11) Por the Skyrme force. A modified versionof
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Negele's effective interaction was used by Zofka and Ripka* (ZR) . Mosz-
kowski® also studied some s-d shell nuclei with his Modified Delta In-

teractioii (MDI). W quote some of their results.

2. MULTIPOLE EXPANSION OF THE NUCLEAR DENSITY

The density of states distributions of a nucleus with A nu-

cleons is given by

p(P) =

7

[ 3 BN

I 6.7 ]2, (%)
1 z
the summation being over the occupied states described by the Hartree-
Fock single particle wave functions ¢i(+) . The above expression can be
developecl to the final form

o(® =3 oy (r) Pr(cos o) , (5)
L

where the multipolar expansion coefficient is

oy (®) =0 () 8pg + oy () (6)

The first contribution comes from the inert core and the se-

cond is from the valence nucleons, namely

) =4 (20 + 1) B2, (r) (7
ore® T Loy PV Al
(01)
and
OZN(I») =0+ (-9 ZZH ) pia R () Ry g ()
T nlgm
n' 'j'

[(20+1) (22041)]1/2 (20201 20) (205 'm| jm) (8)

WD ' g5 )
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Besides the Clebsch—ﬁ[_ordan and Racah coefficients, the RnQ(r) are radi-
al wave functions, Pan! is the HF density of states; a stands for the
set of harmonic oscillator quantum numbers », R, j, m In the s-d shell,
the contributing L values are L = 0 (monopole), L = 2 (quadrupole) and

L = 4 (hexadecapole) .

As we neglect the Coulomb interaction and ¥=Z, the densityof
protons will be pp(z-:) = % o(7), where the total density ol® s given
by (5). Corrections due to the center of mass motion and to the finite
size of proton6 were taken into account, such that one obtains the nu-
clear charge density distribution pc(?), which can be also written as a
multipole expansion. The new coefficient pg(r) is a function of the old

one given by expressions (6), (7) and (8).

With harmonic oscillator wave functions, the nuclear state
can be written as a product of the center of mass w.f.times an intrinsec
wave functions. The spurious states are eliminated by keeping the cen-
ter of mass wave function in its ground state. The final expression of

pc(?), containing both corrections, is the same as given by Negele®

e ] =D .
p (r) = —————— f d3r' expl- —=——| p(2") (8")
2[1a2-B2) Y2 (a2-B?)
- P - P
where
B2 = bZ/A
a, = V273 r, = v2/3 0,8 fm
b = h.o. constant

The charge density distribution coefficients for L =0, 2, 4
are shown in Figs. la, Ib for Ne2?, Mg2*, 5i28 and S32, Comparison with
the experimental data will be made through the electron scattering form

factors as the experimental densities are derived from them.
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3. RADII
The nuclear mass and charge distributions expressions are
2, _ Mr n

<rf> = — rpo(r) rt dn (9)

)

and . o
e B[00 o (10)

. )

respectively. o,(z) is given by (6) for L =0, and oz(r) isthe I =0

expression for the charge distribution, taking into account the correc-
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tions due to the center of mass motion and to the finite size of pro-

ton.

In Table 1 we compare the experimental values of the nuclear
charge r.m.s. radius for Ne20, Mg2%, Si28, $32 and Ar3® with the ones

obtained by various authors.

The mass radius, not including the corrections,isalso shown;
one sees that the net effect of the finite size of proton and the cen-

ter of mass motion corrections increase the radius value.

The expression depend on the harmonic oscillator constant b.
Ve used the Blomgvist-Molinari’ formula to calculate the value of b for
each nucleus. What we found is in very good agreement with the data, in~-

dicating that their formula works quite well for light nuclei.

Table 1 - Nuclear charge radii {in fm) determined by various authors.
In the last column we have the mass radius, without the corrections

due to the center of mass motion and to the finite size of proton.

rc Exp. VB-I VB-11 MDI- | ZR This Work
e "y

Ne2® 2,91 # o.os(a) 2.88 3,02 2.9 3.05 2.87 2.80

Mg2*  2.99 + 0.03?)  3.01 3.5 312 3.6 3.0h  2.97
(®)

(p)

si?® 3,11 + 0.03 3.05 3.26 3.35 3.16 3.09

§32 3.24 + 0,03 3.17 3.32 3.26 3.42 3.26 3.19

Ar3® 3.30 3.42 3.40 3.46 3.35 3.28

{a) Ref.8, {(b) Ref.9.

4. INTRINSEC MULTIPOLE MOMENTS

The nuclear charge intrinsec quadrupole and hexadecapole mo-

ments are defined by the expectation values



Qi = 2<%I§§l%> (1)
and
- Ok
Hi <o QO[<I>0> , (12)

where ]d>oi> is the Hartree-Fock ground state, the operators having the

wel 1-known forms

Z
A2 _ 1 il 2
@-1 SR ey, @) (13)
and
su ] Z 5
Qo =27:£1 5 e; r; Yko (97,) (14)

Assuming that the proton and neutron wave function areequal,

plus the fact that ¥=Z, we can write

dy = (4o, +a) 8?" J po(r) #* dr (15)
0

fOI)

b
Hﬁ (1 +0Lp+ocn) —9—J0 pf(r) ¢ dv, (186)

The nuclear charge distribution densities are the ones in-
cluding the corrections mentioned before. The proton and neutron effec-
tive charge corrections, aP and a,, were taken as 0.5. One sees that
Qf(Hi) measures the quadrupole (hexadecapole) deforrnation of the nuclear
charge distribution. Depending of the sign of Qf being positive or nega-

tive, the deformation will be prolate or oblate, respectively.

The quadrupole moments are in Table Il; the best comparison
with the experimental data was reached by Vautherin, with the VB-1] set
of parameters, also by Zofka and Ripka and this work. Our values of the
hexadecapole moments in Table 1l are too low by a factor of two compa-

red to the experimental ones.
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Table || - Hectric quadrupol e nonents (in fnf) cal cul ated by wvarious
authors. In the case of $%2 and Ar3®, experinent does not provide their

si gns.
¢ :

0 EXp. VB- | VB- 1 MD -1 ZR This Verk
Ne2® 58 +3@ 3 46. 45 . 49.8 47.9
g2t 69 *3(@ 50. 60. 50. 68.6 58.9
sizs gy *3(@ -26 -60 -72.2 -67.8
532 47 30 g 52. 36. 63.8 46.8
Ard8 54 * 5(b) -36 -48 -50 -52.0 -48.4

(a) Ref.10, (b) Ref. 4

Table 111 - Hectric hexadecapol e noments (in fm?)cal cul ated by various
aut hors.

jiad Exp. @ Theor.
0

Ne20 249 + 27 i27.
Mg2* 48 + 16 -1k,

528 205 + 33 105.

532 __72_
Ard 90.
(a Ref. 10

5. ELECTRON-NUCLEUSSCATTERING FORM FACTORS

In the Born approxi mation, the elastic and inelastic form
factors are given by the fol l owi ng expressions:
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and

Py k) =

= _gl‘[ ‘ J jo (kr) pi(r)rzdr
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Fig.2a- Elastic scattering form factors for NeZ? and $i%%.

represent experimental values.
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Fig.2b = Elastic scattering form factors for Mg”* and s32,

represent experimental values.

IFigh?

2

has Z protons,

the C.'s being their normalization constant .

.28

IF(q)I®

'
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The points

qifmh)

10
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The points

an

H ) § ke o (r)%ar ‘2(18)

the

spin is zero and J is the angular momentum of its final ex-
these excited states are projected from the HF wave funct-
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We show the elastic form factors in Figs. 2a, 2b.

The experimental points for Mg?*, Si2% and $32 are from
Ref. (9); for Ne2?® they are from Ref.(11). The curves reproduce quite
well the experimental points before the diffraction minimum. This re-
gion of low momentum transfer corresponds to the nuclear surface, which
is, therefore, well described by our wave functions, justifying thegood
values obtained for the nuclear charge radii. After the first minimum,
the curves have a peak localized below the experimental points, except
for Ne?®. Ripka found similar results, which may not be due to the Born
Approximation, as Ford, Braley and Bar-Touv'? also obtained this beha=-
viour employing a better approximation. This region corresponds to high
nuclear densities and the discrepancies are attributed to the fact that
the Hartree-Fock wave functions do not contain short range correlations.
It has been verified!?® that, when Jastrow correlations are introduced in

the nuclear wave functions, the form factor second peak value increases.

The form factors corresponding to the inelastic scattering,

+ +
with a 0 - 2 nuclear transition, are shown in Figs. 3a, 3b.

The experimental points were taken from the same referen-
ces as in the elastic case. This form factor depends on the charge qua-
drupole density shown in Figs. la, Ib. Some authors?? suggest that one
should increase the number of the shell model basis states in order to
improve the results. In our case, it seems that only the 1s-0d states
were enough to account for Si?8. The other nuclei may have abigger qua-

drupolar deformation, thus requiring more single particle states.

. + + -
In Figure 4, we show the 0" ~ 4" transition form factors
only for Ne2® and Si2%, which are not in good agreement with the expe-
rimental points. There are no data available for the other nuclei we

studied.
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Fig.3a -

Experimental values are shown for comparison.
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Fig.3b - 0" > 2% inelastic scattering form factors for §i?® and ¢32

Experimental values are also shown.
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6. TRANSIITIONPROBABILITIES

Ne20
-t

q(fm’)

2. 3,
si%®

=
q(fm’)
2 3,

In the limit of zero momentum transfer,

5i%®

theformfactor for

+ + . : .
the 0" + J° level excitation is usually!? related to the corresponding

reduced electric transition probability by

B(ES, k > 0, 07 > J") = 22 1im
k>0

which,

in the case of J=2, reduces to

[(27+1)11]2

x>

2

Fov | 7+ (%),

0

(19)
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¢
B(E2) = —— (Ef‘ )2(gg) 2. (20)

167

In spite of its simplicity the above expression is incom-
plete when we are dealing with projected states. The correct value must

be obtained from the definition!*

<o |32 1 005]2 (21)

where the final and initial states have well defined angular momentum,

projected from the HF ground state wave function; is the electric

%
quadrupole one-body operator. The matrix element becomes an expression
which is evaluated after inserting a complete set of states, namely, the
HF ground-state, the 1p-1% states, the 2p-2h states, etc. The particle
-hole excitations involving two or more particles do not contribute.
With the 1p-1% terms, the results were shown in Ref.(1). Without the
Ip-lh terms, i.e., keeping only the H-F ground state in the complete set,
it can be shown that the expression (21) wil) reduce to (20). |In Table

IV we show the results from each formula and the experimenta? values.

Table 1V = The B(E2; 0" > 2+) reducedtransition probabilities in units
of e?fm*. Our results from expressions (20) and (21) are in the second
and third lines, respectively. The values of Ripka are from Ref. (11).
In the last line we have the results of Ford, Braley and Bar~Touv, Ref.
(12).

Ne20 Mg2'+ Si28 S32
Exp. ~ 340 = 50D nug x 45®) 346, + 33(P) 330, + 50(®
Eq.(21)  313. 453, 566. 311
Eq.(20) 167 243. 331. 131.
Ripka 247. 470. 520
FBB 204. 37h. 376. 325.

{a) Ref.10, (b) Ref.15, (C) Ref.16,
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For Si2' the best theoretical value occurs when the expression (20) is
used. This is consistent with the excellent fitting obtained for the
ot » 2+ scattering form factor shown in Figs. 3a, 3b.

7. CONCLUSIONS

The results presented here are quite satisfactory in spite
of the approximations we had to make concerning the inert core, as dis-
cussed in Ref. (1), plus the fact that the calculation wasrestricted to
the s-d shell states.

The nuclear radii were in good agreement with the experi-
mental values. The harmonic oscillator parameter b was not adjusted to
reproduce the best radius. The value of b was fixed for each nucleus,
given by the formula of Blomgvist and Molinari, which works wellfor

light nuclei.

The best values for the quadrupole moments were obtainedin
the case of Si2® and $%2, the other nuclei presented a 10-20%deviation
from experiment..With the usual nucleon effective charge we could not
reproduce the hexadecapole moments; this could be attributed tothesmall

subspace we worked with.

The elastic form factor has been well reproduced up to the
first minimum, suggesting that, in the HF approximation, the nuclear
long range correlations are correctly described by the Skyrme interac-
tion. Except for $i2%, we failed to reproduce the inelastic form fac-
tors for the 0 - 2 transition, what is consistent with the quadrupole

moments results.

A more complete study of nuclear properties in the HF ap-
proximation, with the Skyrme force, should be performed in a larger ba-
sis of single particle states, without the inert core hypothesis, but
including short range correlations.

W thank Dr.J.R. Moreira of the' Instituto de Fisica da USP

for many fruitful discussions.

317



REFERENCES

1. DR de Oliveira and S.S. Mizrahi, Rev.Bras.Fis, 3, 591 (1977).

2. THR. Skyrme, Phil.Mag. 7, 1043 (1956).

3. D. Vautherin, Phys. Rev. €7, 296 (1973).

4, J. Zofka and G. Ripko, Nucl. Phys. 4168, 65 (1971).

5. S.A. Moszkowski, Phys. Rev. C2, 402 (1970).

6. R.Hofstadter and E.E.Chambers, Phys. Rev. 103, 1454 (1956). J. W.
Negele, Phys. Rev. €1, 1260 {1970).

7. J. Blomqvist and A. Molinari, Nucl. Phys. 4106, 545 (1968) .

8. J. Moreira et al., Can. Journ. Phys. 49, 1434 (1971).

9. G.C. Li et al., Phys. Rev. €9, 1861 (1973).

10. Y. Torizuka et al., Phys. Lett. 36B, 9 (1971).

11. G. Ripka, ''"Proc.int.Nucl.Struc.Studies'', Sendai, Ed. K. Khoda and H
Ui, 1972.

12. W.F.Ford, R.C.Braley and J. Bar-Touv, Phys. Rev. C4, 2099 (1971).
13. D.A. Sparrow and W.J. Gerace, Nucl. Phys. A145, 289 (1970).

14. SA .Moszhowski, Alpha-Beta—-Gamma Ray Spectroscopy, Vol. 2, North-
~Holland, (1968).

15. A. Nakada and Y. Torizuka, Journ.Phys.Soc.Japan 32, 1 (1972).

16. H.C. Lee, Proc.Int.Conf, on Nuclear Moments and Nuclear Structure,
Osaka-Japan, 1972, Ed. H. Horie e K. Sugimoto.

17. GR Hammerstein et aZ., Phys. Letters 398, 176 (1972).

318



