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Some examples have been given in the literature of ambiguous
gauge fields, i.e. those not having a unique potential (up to a gauge
transformation). W& examine an example given by Deser and Wilczek and
find the condition (for any gauge group) that the group element genera-
ting the potentials must satisfy in order for the potentials not to be
related by any gauge transformation. In three dimensions (for SU2) the-
re are other families of ambiguous fields characterized by arbitraryunit
vector fields n(%) (#2=1). The example given by Wi and Yang belongs to a
particular family with 7= -rt.;/'rr. Ve also find the sources of these fi-

elds and some interesting relations between them.

Alguns exemplos de campos de medida ambiguos, isto €, que nao
possuem un potencial Unico (a menos de transformacgées de medida), apare-
ceram na literatura. Examinamcs aqui un exemplo devido a Deser e Wilczek
e achamos a condicdo (para qualquer grupo de medida) que o elemento do
grupo que gera os potenciais deve satisfazer afim de que os potenciais
ndo sejam relacionados por nenhuma transformacdo de medida. Em trés di-
mensBes (para SU,) ha outras familias de campos ambiguos caracterizados
por campos de vetores unitarios Z(ﬁ*) (;1*2=1) arbitrarios, 0 exemplo de Wi
e Yang pertence a uma familia particular com 7= ;1*.?/;. Determinamos tam-

bém as fontes desses campos e algumas relacdes interessantes entre elas.
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1. INTRODUCTION

T.S. Wi and C.N. Yang! have pointed out, by constructing aspe-
cific example, that in non-abelian gauge theories the field tensor FW
does not determine the potential Au’ not even locally and notevenup to
a gauge. In their example one of the potentials corresponds to a magne-
tic monopole in three dimensions, the other being proportional to a pure
gauge. One may then ask if their result reflects only a pathological si-
tuation or there are other cases as well. However, new examples havebeen
given by S. Deser and F. Wilczek? and also a necessary condition for the

existence of this phenomenon has been given in terms of the fields2»3,%.

V¢ examine here the first two examples of reference? and show
that they are related by a gauge transformation, being therefore equiva-
lent. Further we find an 'integrability" condition, on the group element
generating the fields, for the corresponding potentials being related by

a gauge transformation.

For three dimensions and the group SU,, we show that the exam-
ple given in referencel is a particular case within a whole family of
fields, each class of the family being characterized by a unit vector
field n(») (n2=1); Wi and Yang's example belongs to the class characte-

rized by the choice n(#) = (#/7).

Recently Halpern5 discussed the construction of all finite ac-
tion "ambiguous'' fields in the axial gauge. The examples we examine here
do not belong to this class as they are ''quasi-pure gauges''® with cons-

tant factors.

The fact that one and the same field Fw may correspond to phy=-
sically inequivalent distributions of sources means that Fu\)’ although a
gauge covariant quantity, does notcarryall the information required to

describe the physical situation.

In section 2 we present the main theorems leading to the above
mentioned results. In section 3, we discuss some properties of the sour-
ces that give rise to the same field. In section 4 we show the gauge in-

dependente of the potentials which correspond to the same field. In sec-
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tion 5 we treat the specific case of three dimensions. Finally in section

6 we give a four dimensional example.

2 RELEVANT THEOREMS

Let us call

k
=& ’
KT R
X being the generators of the corresponding Lie group.

Let q>u and ‘{lu be two vacuum potentials, i.e.:

38, a0 *+ [8,.0]=0
- =0
BY, T, Y Eyu,\y\;]
then:
Theorem 1. The potentials?
(a) _ s
=ap + (1-QV ; = (1~ ay
4, = ap + (-ay R (1~ ™ a¥,

i

(a = arbitrary constant) give exactly the same field

Proaof:

* = (
(u%)) - au () av Aua) . [Au(a), A\(,a)]

= ofo 0, - 3,0,) + (1-a) (auwv -ay )+ (,2[3,“,%]

+ (1-a) 2 [‘1’”,‘1’\)]+ a(l-a) ([d)u ,‘{‘v:] + [‘l‘u, ¢, -

Eliminating the curls by using (2) and (3) we obtain:

(o) ,
Fo = all=a [l = %), (o - )] .

m

(2)

(4)

(5)
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As (5) is invariant under the interchange a < {1-a), the theorem is pro-

ved.

Corollary 1. By taking ‘f'u =z 0 in theorem 1, we see that also2

Af“) =a¢, ~ and Ai"") = (l-a)¢u, (6)

give exactly the same field

(o)

HV

F¥ = a- )Epu,@ = a(l-a)(auq»v - avd>u) n

Theorem 2.

Theorem 1 is invariant under any yauge transformation.

Proof. Under a gauge transformation U
A;=U'1Auv+u'lauu (8)

Substituting in (4) we get:

r((’-) =l - =1
AU‘ = U “(a ¢u + (1-a) \Pu)U+ U BuU

a ¢£l + (1-a) '{"‘1

and, from (5)

H0)

uv

f= - a(l-a) [(el - ¥, (el - ¥)] . Q.E.D.

Corollary 2. It is always possible to find a gauge transforma-

tion which brings Theorem 1 into the form of Corollary 1.

Proof. ‘?u being a vacuum potential it has the form:
¥ =713 V, for some V .
B i

By performing the inverse gauge transformation v, ‘yu is ta

ken to zero, which together with theorem 2 completes the proof.
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(a)

In this gauge, the potential Au takes the form (6) and the

vacuum potential derives from a certain group element U

_ 71
d’u =U U,u (9)
(a)
A =avUl v (where U =3_ U) (10)
S s 1 S B u

Corollary 3. In the gauge in which the potential is given by

(1-a)

(10), the field foz) common to both Aﬁt) and A , takes the form:

(@) -1 - _ ,(1-a)
Fo = a(1-a) (U,u v,V U,u) =F (11)

For the proof it is only necessary to use the property:
vty +ultu=0 (12)
sH sU
in equation (7).

Potentials of the form (10) are called ''quasi-pure gauges" by

Y. Nambu®.

3. SOURCES

It is convenient and interesting to find the sources of thepo-

tentlalﬁ Aa) and A(] a), as they give rise to the same field F (a
= F . Accordmg to the general definition:
Y
gy = + 2] (13)
it is easy to see that the current distributions corresponding to A( o)
and A(] a)’ in gauge (10), satisfy the relations
@) 50 ) e B B0 T] (1)
v v u) u9

j(a) +j(l-0t) (I-a){a B ’¢'_] + 2 B; [4) ,¢‘;D} (15)

v \Y
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Equation (15) can also be written as:

j\()a) + J\()]'Ol) - 8a (]_a) j\()l/Z) (]6)

From which it follows that, when j\fl/z) - 0:

(o) (1-a) Leo(172)
i, =, (if g, = 0) (an

This means that, in some cases, (see below for an example) two

equal and opposite sources can give rise to the same field. Egs. (14) and

(15) may, of course, be used to find the explicit form of j ¢

The current (17) has the uncommon property (for non-abelian

(a)

fields) of being conserved (8\) jv = 0) for any value of a. Thir comes

o) is zero, (14) and

about simply because when a particular current ,7'\(/“
(15) show that the double-commutator is proportional to the divergenceof

the single commutator:

BB, J] = -2 Bl (i <0

Og M
In that cases, from (13) we get:

o) (0) « (o) _ _a {o)
i, = au Fly " z;p Fuv = (1 &-;) L

This "maxwellian'' form for the current implies, of course, au J'“ = 0.

4. GAUGE INDEPENDENCE OF A AND A (1-a)

Up to this point we have given some general theorems on diffe-
rent potentials giving the same fields. One can now rise a natural ques-
tion: Could it be that these potentials are not essentially different,but

in fact one of them is the gauge transform of the other?

In order to answer this question let us take again

2 (o)

=Qa
u ¢u’
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where ¢u is vacuum potential.

(1-0)

Suppose now that A(a) and A are related by a gauge trans-

formation, i.e.:

~1 -1 ~_ _
Vo ¢u V+V OV u (1-a) ¢u | (18)

where V depends on a

As the corresponding fields are equal, it follows that:

VF(I-a) sl F(i-a) - F(a) X : (19)
uv u Hv

using (7) in (19) we get:

- -1 . -
Poyu =0 V= by T e (20)

Putting « = 0 in (18), we learn that

- =1 =
¢, V0 a, VvV, (where V; = V(a) a=0)‘ (21)

With (21) and {12), equation (20) for a=O can be written as:

vio-v vi=yvly -vly ' (22)
0,4 0,V 05V 0,5H 0sH 0,V 0,V 0sH
which is a necessary condition for the potentials to be connected by a

gauge transformation.

W will now show that there exist vacuum potentials which do
not fulfill (22). W shall particularize with the group SU(2), for which

the general form of ¥V, is:

<l
"
[\
.
s
I

. =cos f+iasenf, (f=Ff) (23)
where a = sen, |%
From (23) we have:

v =iV 0 f"J + sen f . (24)
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174 1 = - V_l - 7: S g (25)
H i 0 © flu enf 3
from which we deduce:

-1 -1 -1 -1 - 2 .
vV*:-v v ~(viv -v* v )=~"h sen o g ). (26)
0°H 0,V 05V O’U) ( 0,4 0>V 03V 0,H f(f:u »V f,V sH

Eq. (26) shows that the condition (22) is only satisfied if (33) fulfills:

o o =10 (27)
sH HV sV U

In three dimensions, with the particular choice n = 2/f, 0 = o_ ,we can

write (27) in the form:

Vfavo, =0 (28)
But

> g 7

V0r=;'?z0'r (29)

Substituting (29) in (28), multiplying by » (dot product), and

recalling the linear independence of the Pauli matrices, we arrive at:
FAVF=0

so that the only sclution of (28) isf = constant. W see that when 9,

(cf eq.(21)) derives from a V, of the form (23) in which f is not cons-
tant, then condition (22) can not be fulfilled and the potentials *

(1-a)

and Au can not be connected by any gauge transformation: 1t ma))’(be
. o
mentioned that when f = constant, the gauge transformation relating Au
_ 1ivo.
and AL(J‘ a) isvV=c TitgVv=(i-2a)tgf.

5. THE CASE OF THREE DIMENSIONS

We have just seen that in three dimensions (and SU(2)) any po-

{ . . .
tential 4 o) of the form (10) which derives from a group element =70
with a non-constant f cannot be connected by a gauge transformation with

the potential Z(]-a) which gives the same field but different current.Ho-
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wever, when f is constant, the theorem fails and 1) ceases to be physi-

cally different from Z(]-a) .

Ve shall consider now the case f = 1I/2 for which (23) gives Vs

= 4o, transforming

Z(a) —aoVo (30)

(1-a)

into A

W shall, in this case, construct another potential (not equi-

valent to (30)) which gives the same field,

59 L q(ea) Toa T o =30 (31)
[3 is the dual of Fysl
For that purpose we shall first prove the following lemma:

Lemma

T=Vog AVoo (32)

is an ordinary vector (free frem Paull matrices) having zero divergence.

Proof. (recall o = o, n.)
_— i1

Ki = Eijk o,j O,k a

K, = + 7 €

i7" Sjka, j ™k Cap oo

abc

The 6 , term does not contribute (asnang Z = 0), we are leftwith

ab

K. =1 iik "a,d "b,k “abe nd(dod * % ge o) (33)

This time the term in €ade does not contribute (as Eabc Sode - sad Gbe -

- Gae de). Therefore, no o matrix survives in (33) and the first partof

our lemma is proved.

The divergence of (33) is:
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K. =7 ¢.. . . =1
37, 2 -t 67,(77( na,J nb,k nc,w Eabe = ° fabc €abe ?

where

(34)

=€..,.Nn_ . .

fabn E?,,jk a,d nb, k nc,t

is a completely antisymmetric tensor of the third rank totally orthogonal
to 71(71 f

a “abe
-space (orthogonal to ;’L)). But we know that a completely antisymmetric

= 0) . The tensor (34) belongs then to a two-dimensional sub

tensor cannot exist when the rank is greater than the number of dimensi-

ons. So f ., s identically zero and the lemma is proved.

As an immediate consequence we have

VonrVo=<oVara (35)
for some vector field a(n).
We are now in position to prove the following.
Theorem 3
The potentials Z(a) (Z(l_a)) (given by (30)) and

>

f(“) = U_V’o-i(a-%)zca (36)

N —

(z satisfying (35)), give exactly the same field (31)
(o)

-

Proof. Let us compute the field due to A
, - 1

Vo A_V>o—t\a—§-)2 Vohd+a¥ A a.

Or, using (35),
2

—V}AE(G)=[%-((}L-])

5 J_V)c A%c—i(a-;—) Vo ha (37)

On the other hand, noting that

{o, P63 =Va2=0, (38)
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=(

a (o) 3 W2 »

=~-L—VOA~V)o+i(a-f} Vo Aa (39)

-
o 47

When we add (37) and (39) we find:
> 2
B(a)={:{;-(a—%)]$oA30,

which coincides with (31) and proves the theorem.

It is not difficult to compute the currents corresponding to

(30) and (36). W only give the final answer:

3@ () (20T 0 A T A a+ia(l-adoT A T A & (h0)
2( ) > > >
i =7 al-a) oV A V A q (41)
. oo (1-a) +(a) :
It is easy to see that, while J =0 g 0, no possible gauge trans-

formation relating (30) and (36) can exist; for such a transformation
would commute with o (as Bis invariant) , but then is would also commute

with 3(0‘) leaving it invariant, contradicting (40} - (41).

5>
When Z = -V) A Z is curless, 3'(0‘) = 0, while
g(a) =7 a(l-a) (I—Za)-V) 6 ADB =- g(l-a)
The example of reference (1) belongs to this class with = ;/r3. Note

also that (36) is not an “almost pure gauge'®.

6. EXAMPLE IN FOUR DIMENSIONS.

Let us take the following group element:
7= Xt (g + 25 x= (x, x)V/? (42)

From it we deduce the potential:
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A Ly s g 2ge YR (43)
where o L d - l-o ( =-0
i = Z "ign %k 8NGO = 7 9y N0, T T O/

The field corresponding to (43) is:

F(Ot) - hio (1-a) X ¢ X -X o X +Xx20 ), (4L)
uv 2 novp Tp voup p uy
and the current:
o X
A 8ia(1-a) (1-2a) 220 o - ;0 o) (45)
u 4 u
x
(172) S
We see that ‘711 = 0 and eq. (17) is in force. Then, two equal

and opposite currents give raise to the same field (without being physi-

cally equivalent).

In this case it is possible to showdirectly thatagaugetrans-
(a) and A(]-a)

formation V should commute with F

cannot exist. In fact, such a trans-

(o) (a)

v (eq.(4k)) and anticommute with J,

(eq. (45)). The last condition is easily shown to imply the anticommuta-

formation relating 4

tivity of V with all three Pauli matrices.

W are indebted to Prof. J.A. Mignaco for calling ourattention

to references (2} and (5).
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