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W present a discussion of the Cluster -Bethe-Lattice method
for a planar antiferromagnet for which the hamiltonian parameters are

known and the one-magnon density of states may be computed exactly. We
study all the square clusters of 1 to 121 atoms, both connected to and

isolated from the Bethe lattices. We show that, even for the Ilargest
cluster treated, the approximation is still far from the exact result.

We discuss the liniitations of the method.

Apresentamos uma discussdo do método '"'Cluster-Bethe~ Lattice'
para un antiferromagneto planar, para o qual os parametros do hamilto-
niano sdo conhecidos e a densidade de estados de um-magnon pode ser cal-
culada exatamente. Estudamos todos os nucleos centrais quadrados conten-
do de 1 at2 121 atomos, tanto ligados quanto isolados das redes de Be-
the. Mostramos que, mesmo para o nlcleo central de 121 atomos, a apro-
ximacdo ainda se encontra longe do resultado exato. As limitag¢oes domé~

todo sdo discutidas.
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1. INTRODUCTION

The Cluster-Bethe-Lattice (CBL) method has been extensively
used recently to study amorphous semiconductorsl*2, metallic binary al-
loys3’*, impurity centers in ionic crystals®, phonons® and magnons 7’8
in disordered structures, and also charge transfer effects in disorder-
ed binary substitutional aIonsg. The objective of the present work is
to study the problem of convergence of the CBL method in a simple, vyet
quite realistic system. Although we consider an application to magnetic

systems, the conclusions which we reach are quite general.

The basic idea of the CBL method is to isolate in a physical
system a finite cluster of atoms and attach to the ‘'dangling'' bonds of
this cluster an infinite Cayley tree, or Bethe lattice, of the same co-
ordination number as the envisaged crystal structure. The Cayley tree
is a structure in which, each atom has the same of nearest neighbors,
but there are no closed rings of bonds, i.e., between any two atoms in
the lattice there is one and only one connecting path. It 1is thus, as
far as the cluster boundary conditions are concerned, a quasi one-dimen-
sional approximation. W& can see irnmediately from this description that
the method is appropriate for the discussion of local properties, al-
though unlike finite clusters, the boundary conditions give the system
some of the properties of an infinite structure. For instance, the one-
-particle Green's function has always a branch cut indicating the exis-
tente of a continuum of excitations. The approach to the real physical
system follows from taking clusters of a progressively larger size. Ho-
wever, in the usual three dimensional clusters which have been investi-
gated the number of atoms Nc in the cluster varies very rapidly with
cluster radius Rc(Ncoc Rg), so that we are limited, for cornputational
reasons, to clusters of rather small dimensions. V¢ have thus decided
to look at planar bi-dimensional systems, such as the antiferromagnet
szNiFu, for which we can take clusters of fairly large radii and yet
keep the number Nc within a manageable interval.

In Section 2(a) we review briefly the system we want to investi-
gate and set up the hamiltonian. In Section 2(b) we construct the CBL

equations. The results for the local density of one-magnon states are
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presented and discussed in Section 3. Finally, in Section 4 we present

our conclusions.

2. THEHAIMILTONIANAND THE CBL EQUATIONS

(2) The Hamiltonian

The transition metal tetrafluoride szNiFl+ is memberof alar-
ge family of compounds = 4,7F,, where A is an alkali and T a transition
metal = which have the tetragonal iayered strcuture. In Rb,NiFys the Ni
atoms are placed on square lattices, with lattice parameter 4.087 A,
stacked up with an interlayer distance of 13.67.A. The exchange cons-
tants for the coupling of spins within the same layer are about six or-
ders of magnitude larger than those for the coupling between different
layers!0®, Hence we may think of this system as a quasi bi-dimensional
one. The spin Hamiltonian may be written:

H= £ J(mmen) Sma)-Smea,a) - 2, T a $5(ma)  (2.1)
myA, o Q

In (2.1), m labels the primitive cells of the magnetic struc-
ture = we are dealing with an antiferromagnet with two ions per primi-
tive magnetic cell -3 a = #1 kabels the magnetic sublattices; J(rp,m-ﬂ-A)
is the exchange constant for the coupling of nearest neighbors spins only;
and HA is the anisotropy field. The values of the parameters whichenter
the hamiltonian (2.1) for F\bZNin are quite well-known. ltis found that
J = 4.15 MeV for nearest neighbors and J=O otherwise, S=I and 2u0H =
= 0.28 MeV !l Since the anisotropy energy is so small we take, in the

numerical calculations discussed below, HA = 0.

{b) The CBIL Equations

The CBL method as applied to magnetic 'systems has been dis-
cussed in detail elsewhere’. For this reason, we only summarize those
results which are important for treating an antiferromagnet.

The one-magnon Green's function is defined by:
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L |
@8) = (1207 (25)71 <5t (ma) |57 (n) >> (2.2)

and its equation of motion at 7=0, assuming the Néel state as theground

state, 1is:

aB _ = 0B
{w-E (a)} Gmn (w) = Gmn 6a8+ iT(ma,erAa) Gm+A,n(w) (2.3)

where the summation over h runs over primitive cells ofthe magnetic lat-

tice and not over atoms. In (2.3}, I = -o and:
E(a) = 80JS + 20uH, = of , (2.4)
(14a)
{-1)2 2J5 for nearest neighbors
T(ma,m+Aa) = (2.5)
0 otherwise .

l

To illustrate the application of the method, we consider the
cluster formed by a single spin attached to four Bethe lattices. If the

central atom has spin up (a = + } we obtain:

++ -+
(wE) G5t =1~ b WG
-+ ++ ++ .
(WB)Gpper,0 =¥ Ggn0 * W G o (2.6)
++ -+ -
-E) G = - - Gt
(WB) Gppuz o = ¥ ane1,0 ™ 3V Gpi3 g

for n > 0, where W= 2J5.

These equations are similar to the ones obtained by Yndurain
and Joannopouios for heteropolar compoundslz, except that the sign of
the overlap integral alternates from one equation to the next in the hi-
erarchy above. An equivalent set of equations is obtained for the case
of a central spin down atom. The solution of (2.6) requires the intro-

duction of two transfer functions, defined by:

-+ -+ At
Cone1,0 =% Sono
(2.7)
+ =t
Gome2,0 = ¢ “anu1 0
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which are formally related by:

-+
(w*+B ¢ =" (0-B $- (2.3)
The final result for the density of states is:
+ —
plw) = =171 Im fG++ (w+z0 ) + GOO (m+7l0+)} =
00

A 2 . L2
= [ w? - WP b, ofor 2W< |ul|s, WW . (2.9)
mlo|  16W2 - 2 -

This is plotted in Figure 1.
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Fig.l - The exact (dashed line) and CBL (full line) densities of one-
magnon states for the antiferromagnet szmru. The cluster size is (a)
N 1211; (b) ¥, =9; (c) ¥, =25 (d) &, =49 (e) ¥ =8l and (f) ¥,
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3. RESULTS
(a) Exact Density of States

The exact local density of one-magnon states is easily compu-
ted for the hamiltonian discussed in Section 2(a). The calculation pro-
ceeds along standard lines. it is easily shown that for a square latti-

ce the magnon dispersion relation is given byl3:
>
W@ =" V1Y, (3.1)

where:
q.a
+ z 2,4
v{(q) = cos (—=-) cos (.._y_) (3.2)
V2 V2

In (3.2), a is the conventional lattice parameter of the squa-

re lattice. The density of states is given by:

p(w) = 201 38w - wl(g) , (3.3)
' q

where N is the number of magnetic primitive cells. Equation (3.2) maybe

rewritten:

olw) = bn=2 e ofl dy { (1-22) (1-42) 17172 §(u-w /1 -22y?)
0

(3.4)
where
q,4% q,2
P
/2 V2
This yields an elliptic integral:
8l AT
olu) = ke Bl (3

w2 /W2 —u? (W W -2 W W

where X(g) is the complete elliptic function of second kind.
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The sum rule:
plw) do =1 . (3.6)

is easily checked.

The analytic expression for p(«) is plotted in Figure 1,

where it is compared to the approximate CBL results.

{b) CBL Density of States

In this Section we consider six different square clusters
containing 1, 9, 25, 49, 81 and 121 atoms. The calculation is performed
both for isolated clusters and for clusters connected to Bethe lattices
in the usual way. tn the former case, the boundary conditions consistin
setting the transfer functions connecting the cluster to the Bethe lat-
tice equal to zero. Hence we leave the diagonal matrix elements of the
hamiltonian unchanged even for the boundary atoms. These boundary con-
ditions are not physical for a magnetic system, but they allow for an
imnediate analysis of the effect of the Bethe lattices upon the finite

clusters.

In Table 1 we present the results for the spectrurn of exci-

tations, i.e., position and residues of the poles of Tr G for the iso-

s
lated clusters. The following points are worth remarking:mzi) the resi-
dues are simple rational numbers; (ii) as expected, the number of poles
increases and they spread out in energy as Nc increases; (iii) the ma-
ximum excitation energy is an accumulation point of the spectrum as}VC-»co,
in accordance with the divergence which is found is the exact result at

the same energy.

In Figure 1 we show the results for the density of states
with attached Bethe lattices. Also shown for comparison is the exact re-
sult. There are two important features of the CBL method which show up
quite clearly in this Figure. First, the well-known problem of the re-
duced band-width. For the particular situation studied here the CBL band
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TABLE 1

] 9 25 49 81 121

33.200 | 33.200 | 33.200 33.200 | 33.200 | 33.200
1/1 1/2 1/3 1/h 1/5 1/6
23.476 | 29.926 31.961 | 32.64 | 32.921

1/2 L/9 1/4 4/25 i/9

16.600 30.673 | 31.735 | 32.355

2/9 18 | /25 1/9

25.136 | 29.206 | 32.069

1/b b/25 1/18

12.705 | 26.859 | 131.056

1/8 2/25 1/9

21.206 | 29.070

4/25 1/9
10.259 26.247

2/25 1/9

|

23.476

1/18

18.192

1/9

8.593

1/18

Table 1 - Position and residues of the poles of Tr Goo for the various

isolated clusters. At the top of each column is given the number Nc of

atoms of the cluster.

For each entry,

the top number is the position of

the pole (in MeV) and the bottom number is the respective residue.

boundary conditions,
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-width is only half of the exact one . Second, the appearance of delta
function singularities outside the continuum and the oscillationsofthe
continuum density as the cluster size increases. The existence of a
branch cut in the Green's function is a consequenceofthe thermodynamic
limit. The fact that we obtain the wrong branch cut - wrong band-width =
is just anwther indication of the problems connected with this limit in
the CBL approximationl®. By artificially increasing the overlap matrix
elements in the Bethe lattice it is possible to reproduce the correct
band edges for electronic systems. The artificiality of such a procedu-
re is evident, however, when dealing with magnetic systems. Increasing
the exchange constant in the Bethe lattice changes both the band edges
and the center of the band, so that agreement with the exact result is
not improvad. This is a serious limitation of the method that must be
kept in mind. The localized states which appear below the edge of the
continuum are given in Table 2. As expected, we can establish a corres-
pondence between the poles of Tr G00 for the isolated cluster and the
poles of Tr G00 for the cluster connected to the Bethe lattices. The
overall eff'ect of the continuum is to push down in energy the poles of
the isolated cluster. Delta function singularities in the density of
states of the cluster plus Bethe lattices show up only when the isola-
ted cluster size is large enough for poles to appear near toor belowthe

TABLE 2
25 26 81 121
13.86 11.18 9.28 16.36
0.1k 0.10 0.07 0.06
7.91

0.05

Table 2 = Position and residues of the poles of Tr Goo for the clusters
connected to the Bethe lattices. At the top of each column is given the
number Nc of atoms in the cluster. For each entry, the top number is the
position of the pole (in MeV) and the bottom number is the respective re-

sidue.
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lower continuum band edge. The oscillations in the density of states
shown in Figure 1 are also connected to the poles of Tr G00 forthe iso-
lated cluster. It is noteworthy that, even for the largest cluster stu-

died, they still have appreciably amplitude.

4. CONCLUSIONS

The results presented above indicate that the convergence of
the CBL approxirnation to the exact result, inthe case of an ordered so-
lid, as a function of cluster size is quite slow. This is not surpri-
sing, since we are, for instance, trying to generate part of the branch
cut of the Green's function from a series of isolated singularities (po-
les). It is interesting to speculate to what extent the approximation
id adequate for disordered solids, i.e., alloys and amorphouscornpounds,
for which long range order is absent. Since thedetailed structure ofthe
density of states depends upon the cluster size strongly, it is clear
that not much importance can be attached to it, atleast before the clus-

ter size increases appreciably.

In isotropic magnetic systems, like the one discussedin this
paper, the presence of a gap in the spectrum of one-magnon excitations
is a clear indication of the shortcornings of the approximation. |t means
that no excitation can propagate throughout the whole Bethe lattice with
energy less than a certain minimum, whereas it is known that the spec-
trum must extend down to zero. Hence, although the method may be useful
as a first approach to many problems for which no better solutions are
generally known, conclusions drawn from it must be handled with proper

caution.
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